名师推荐复变函数第四版习题课ppt课件.ppt
《名师推荐复变函数第四版习题课ppt课件.ppt》由会员分享,可在线阅读,更多相关《名师推荐复变函数第四版习题课ppt课件.ppt(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2一、重点与难点一、重点与难点重点:重点:难点:难点:1. 复数运算和各种表示法复数运算和各种表示法2. 复变函数以及映射的概念复变函数以及映射的概念1. 复数方程表示曲线以及不等式表示区域复数方程表示曲线以及不等式表示区域2. 映射的概念映射的概念3二、内容提要二、内容提要复数复数复变函数复变函数极限极限连续性连续性代数运算代数运算乘幂与方根乘幂与方根复数表示法复数表示法几何表示法几何表示法 向量表示法向量表示法三角及指数表示法三角及指数表示法复球面复球面复平面复平面扩充扩充曲线曲线与区域与区域判别定理判别定理极限极限的计算的计算4 1.1.复数的概念复数的概念. , 为复数为复数或或我们称
2、我们称对于任意两实数对于任意两实数iyxzyixzyx , , 的实部和虚部的实部和虚部分别称为分别称为其中其中zyx).Im(),Re( zyzx 记作记作 ; , 0 , 0 称为纯虚数称为纯虚数时时当当iyzyx . ,0 , 0 xixzy我们把它看作实数我们把它看作实数时时当当 . 0,0, 0 zyx 时时当当5, 222111iyxziyxz 设两复数设两复数1) 两复数的和两复数的和).()(212121yyixxzz 2) 两复数的积两复数的积).()(2112212121yxyxiyyxxzz 3)两复数的商两复数的商.222221122222212121yxyxyxiyx
3、yyxxzz 2. 复数的代数运算复数的代数运算64)共轭复数共轭复数 , zz 共轭的复数记为共轭的复数记为与与. , iyxziyxz 则则若若 实部相同而虚部绝对值相等符号相反的两实部相同而虚部绝对值相等符号相反的两个复数称为共轭复数个复数称为共轭复数. .共轭复数的性质共轭复数的性质;)1(2121zzzz ;2121zzzz ;2121zzzz ;)2(zz ;)Im()Re()3(22zzzz ).Im(2),Re(2)4(zizzzzz 7 3. 3.复数的其它表示法复数的其它表示法. . , , , . ),( 面面面叫复平面叫复平这种用来表示复数的平这种用来表示复数的平轴轴叫
4、虚轴或叫虚轴或纵轴纵轴轴轴通常把横轴叫实轴或通常把横轴叫实轴或用来表示复数用来表示复数的平面可以的平面可以一个建立了直角坐标系一个建立了直角坐标系因此因此对应对应成一一成一一与有序实数对与有序实数对复数复数yxyxiyxz . ),( 表示表示面上的点面上的点可以用复平可以用复平复数复数yxiyxz ),(yx xyxyoiyxz (1 1)几何表示法)几何表示法8(2 2)向量表示法)向量表示法., ,来表示来表示也可用向量也可用向量复数复数因此因此平面向量成一一对应平面向量成一一对应的的指向点指向点与从原点与从原点复数复数在复平面上在复平面上OPziyxzz ),(yxP xyxyoiyx
5、z rz 复数的模复数的模(或绝对值或绝对值) , 的模或绝对值的模或绝对值向量的长度称为向量的长度称为 z. 22yxrz 记为记为9 模的性质模的性质, zx , zy ,yxz .22zzzz ;) 1 (2121zzzz .)2(2121zzzz 三角不等式三角不等式复数的辐角复数的辐角 ., 0,0而辐角不确定而辐角不确定时时当当 zz.0有无穷多个辐角有无穷多个辐角任何一个复数任何一个复数 z , 1是其中一个辐角是其中一个辐角如果如果 的全部辐角为的全部辐角为那么那么z).( 2Arg1为任意整数为任意整数kkz . Arg , , , 0 zzOPzz记作记作的辐角的辐角称为称
6、为为终边的角的弧度数为终边的角的弧度数的向量的向量以表示以表示以正实轴为始边以正实轴为始边的情况下的情况下在在10.arg , Arg , )0( 000zzz 记作记作的主值的主值称为称为的的把满足把满足的辐角中的辐角中在在 . 0, 0, 0, 0,arctan, 0, 0,2, 0,arctanargyxyxxyyxxxyz辐角的主值辐角的主值0 z)2arctan2( xy其中其中辐角的主值辐角的主值11 (3)三角表示法)三角表示法利用欧拉公式利用欧拉公式,sincos iei 复数可以表示成复数可以表示成 irez 称为复数称为复数 z 的指数表示式的指数表示式.(4)指数表示法)
7、指数表示法利用直角坐标与极坐标的关系利用直角坐标与极坐标的关系 ,sin,cos ryrx复数可以表示成复数可以表示成)sin(cos irz 12 4.复数的乘幂与方根复数的乘幂与方根 1) 乘积与商乘积与商 两个复数乘积的模等于它们的模的乘积两个复数乘积的模等于它们的模的乘积; 两个复数乘积的辐角等于它们的辐角的和两个复数乘积的辐角等于它们的辐角的和.,sin(cos1111)若若 irz ,sin(cos2222) irz )sin()cos(21212121 irrzz.ArgArg)(Arg2121zzzz 则有则有13 几何意义几何意义复数相乘就是把模相乘复数相乘就是把模相乘, ,
8、 辐角相加辐角相加. . , 2倍倍再把它的模扩大到再把它的模扩大到 r从几何上看从几何上看, 两复数对应的向量分别为两复数对应的向量分别为 , ,21zz , 21 旋转一个角旋转一个角按逆时针方向按逆时针方向先把先把 z . 21zzz 就表示积就表示积所得向量所得向量 2 oxyr2r1r 2z1 1z z14 两个复数的商的模等于它们的模的商两个复数的商的模等于它们的模的商; 两个两个复数的商的辐角等于被除数与除数的辐角之差复数的商的辐角等于被除数与除数的辐角之差.,1212zzzz .ArgArgArg1212zzzz 的指数形式分别为的指数形式分别为和和设复数设复数21zz,111
9、 ierz .)(121212 ierrzz则则,222 ierz ,sin(cos1111)若若 irz ,sin(cos2222) irz 则有则有15 2) 幂与根幂与根(a) n次幂次幂:, , nznzzn记作记作次幂次幂的的的乘积称为的乘积称为个相同复数个相同复数. 个个nnzzzz . )sin(cos , ninrznnn 有有对于任何正整数对于任何正整数.1 , nnzzn 有有为负整数时为负整数时.ArgArg,znzzznnn 因而有因而有16.sincos)sin(cos ninin . , (c)为已知复数为已知复数其中其中的根的根计算方程计算方程zwzwn nkin
10、krzwnn2sin2cos1 )1, 2 , 1 , 0( nk (b)(b)棣莫佛公式棣莫佛公式.,个顶点个顶点边形的边形的的圆的内接正的圆的内接正为半径为半径个值就是以原点为中心个值就是以原点为中心的的在几何上在几何上nnrnznn17 5.复球面与扩充复平面复球面与扩充复平面南极、北极的定义南极、北极的定义 , 0 的球面的球面点点取一个与复平面切于原取一个与复平面切于原 z , 与原点重合与原点重合球面上一点球面上一点 S , NS点点直线与球面相交于另一直线与球面相交于另一作垂直于复平面的作垂直于复平面的通过通过 . , 为南极为南极为北极为北极我们称我们称SNxyPNOS(1)
11、复球面复球面18 球面上的点球面上的点, 除去北极除去北极 N 外外, 与复平面内与复平面内的点之间存在着一一对应的关系的点之间存在着一一对应的关系. 我们可以用我们可以用球面上的点来表示复数球面上的点来表示复数.我们规定我们规定: 复数中有一个唯一的复数中有一个唯一的“无穷大无穷大”与与复平面上的无穷远点相对应复平面上的无穷远点相对应, 记作记作. 因而球面上因而球面上的北极的北极 N 就是复数无穷大的几何表示就是复数无穷大的几何表示. 球面上的每一个点都有唯一的复数与之球面上的每一个点都有唯一的复数与之对应对应, 这样的球面称为这样的球面称为复球面复球面. 复球面的定义复球面的定义19包括
12、无穷远点在内的复平面称为扩充复平面包括无穷远点在内的复平面称为扩充复平面.不包括无穷远点在内的复平面称为有限复平面不包括无穷远点在内的复平面称为有限复平面, , 或简称复平面或简称复平面. .对于复数对于复数来说来说, 实部实部,虚部虚部,辐角等概念均无意辐角等概念均无意义义, 它的模规定为正无穷大它的模规定为正无穷大. : 的四则运算规定如下的四则运算规定如下关于关于 )(, : )( 加法加法a)(, : )( 减法减法b)0(, : )( 乘法乘法c)0( ,0),( , 0 : )( 除法除法d (2) (2) 扩充复平面的定义扩充复平面的定义20 6.曲线与区域曲线与区域(1 1)邻
13、域)邻域. : )( , 000的邻域的邻域内部的点的集合称为内部的点的集合称为的圆的圆为半径为半径任意的正数任意的正数为中心为中心平面上以平面上以zzzz . 0 00的去心邻域的去心邻域所确定的点的集合称为所确定的点的集合称为不等式不等式zzz (2 2)内点)内点. , , . , 000的内点的内点称为称为那末那末于于该邻域内的所有点都属该邻域内的所有点都属的一个邻域的一个邻域存在存在如果如果中任意一点中任意一点为为为一平面点集为一平面点集设设GzGzGzG21 如果如果 G 内每一点都是它的内点内每一点都是它的内点, ,那末那末G 称为称为开集开集. .(4) (4) 区域区域 如果
14、平面点集如果平面点集D满足以下两个条件满足以下两个条件, , 则称则称它为一个区域它为一个区域. . (a) D是一个是一个开集开集; (b) D是是连通的连通的, ,即即D中任何两点都可以用完全中任何两点都可以用完全属于属于D的一条折线连结起来的一条折线连结起来.(3) (3) 开集开集22(5) (5) 边界点、边界边界点、边界 设设D是复平面内的一个区域是复平面内的一个区域, ,如果点如果点P P 不属不属于于D, 但在但在P P 的任意小的邻域内总有的任意小的邻域内总有D中的点中的点,这这样的样的P P点我们称为点我们称为D的的边界点边界点. (7) (7)有界区域和无界区域有界区域和
15、无界区域. , , 0, , 界的界的否则称为无否则称为无称为有界的称为有界的那末那末点都满足点都满足使区域的每一个使区域的每一个即存在即存在为中心的圆里面为中心的圆里面点点可以被包含在一个以原可以被包含在一个以原如果一个区域如果一个区域DMzMD D的所有边界点组成的所有边界点组成D的的边界边界. . (6) 区域区域D与它的边界一起构成闭区域与它的边界一起构成闭区域. 闭区域闭区域 23. )( )( , )()( :的起点和终点的起点和终点分别称为分别称为与与为一条连续曲线为一条连续曲线设设CbzazbtatzzC . )( , )()( , , 121212121的重点的重点称为曲线称
16、为曲线点点时时而有而有当当与与的的对于满足对于满足Ctztztzttttbtabta 没有重点的曲线没有重点的曲线 C 称为简单曲线称为简单曲线( (或若尔或若尔当曲线当曲线).). , )( )( , 为简单闭曲线为简单闭曲线那末称那末称即即的起点和终点重合的起点和终点重合如果简单曲线如果简单曲线CbzazC (8) (8) 简单曲线简单曲线24(9) (9) 光滑曲线光滑曲线.0, )( )( , , )( )( , 22称这曲线为光滑的称这曲线为光滑的那末那末有有的每一个值的每一个值且对于且对于都是连续的都是连续的和和上上如果在如果在 tytxttytxbta 由几段依次相接的光滑曲线所
17、组成的曲线由几段依次相接的光滑曲线所组成的曲线称为按段光滑曲线称为按段光滑曲线. . 任意一条简单闭曲线任意一条简单闭曲线C将复平面唯一地分成将复平面唯一地分成三个互不相交的点集三个互不相交的点集.简单闭曲线的性质简单闭曲线的性质25(10) (10) 单连通域与多连通域单连通域与多连通域 复平面上的一个区域复平面上的一个区域B, 如果在其中任作一如果在其中任作一条简单闭曲线条简单闭曲线, 而曲线的内部总属于而曲线的内部总属于B, 就称为就称为单连通域单连通域. 一个区域如果不是单连通域一个区域如果不是单连通域, 就称为就称为多连通域多连通域. 从几何上看,单连通域就是无洞、无割痕从几何上看,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师 推荐 函数 第四 习题 ppt 课件
限制150内