线性方程组的解PPT课件.ppt
《线性方程组的解PPT课件.ppt》由会员分享,可在线阅读,更多相关《线性方程组的解PPT课件.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 线性方程组的解线性方程组的解一、线性方程组的表达式1.一般形式3.矩阵方程的形式方程组可简化为 AX = b 2.增广矩阵的形式4.向量组线性组合的形式12312334521xxxxxx 34151121 12334151121xxx 12334151121xxx 二、线性方程组的解的判定设有 n 个未知数 m 个方程的线性方程组11112211211222221122,.nnnnmmmnnma xa xa xba xa xaxbaxaxaxb 定义:定义:线性方程组如果有解,就称它是线性方程组如果有解,就称它是相容的相容的;如果无解,;如果无解,就称它是就称它是不相容的不相容的问题问题1
2、:方程组是否有解?方程组是否有解?问题问题2:若方程组有解,则解是否唯一?若方程组有解,则解是否唯一?问题问题3:若方程组有解且不唯一,则如何掌握解的全体?若方程组有解且不唯一,则如何掌握解的全体? m、n 不一不一定相等!定相等!定理:定理:n 元线性方程组元线性方程组 Ax = b无解的充分必要条件是无解的充分必要条件是 R(A) R(A, b);有唯一解的充分必要条件是有唯一解的充分必要条件是 R(A) = R(A, b) = n ;有无限多解的充分必要条件是有无限多解的充分必要条件是 R(A) = R(A, b) n 分析:分析:只需证明条件的充分性,即只需证明条件的充分性,即 R(A
3、) R(A, b) 无解;无解; R(A) = R(A, b) = n 唯一解;唯一解; R(A) = R(A, b) n 无穷多解无穷多解那么那么 无解无解 R(A) R(A, b) ; 唯一解唯一解 R(A) = R(A, b) = n ; 无穷多解无穷多解 R(A) = R(A, b) n 证明:证明:设设 R(A) = r ,为叙述方便,不妨设,为叙述方便,不妨设 B = (A, b) 的的行最行最简形矩阵简形矩阵为为第一步:第一步:往证往证 R(A) R(A, b) 无解无解若若 R(A) R(A, b) ,即,即 R(A, b) = R(A)1,则,则 dr+1 = 1 于是于是
4、第第 r +1 行对应矛盾方程行对应矛盾方程 0 = 1,故原线性方程组无解,故原线性方程组无解111,1212,2,1,1(1)10001000100000000000000000n rn rrr n rrrmnbbdbbdbbdBd R(A) R(A, b) R(A)1 前前 r 列列 后后 n - r 列列 前前 n 列列前前 r 列列100010001000000000B 12(1)000nmnddd 第二步:第二步:往证往证 R(A) = R(A, b) = n 唯一解唯一解若若 R(A) = R(A, b) = n,故原线性方程组有唯一解故原线性方程组有唯一解后后 n - r 列列
5、 则则 dr+1 = 0 且且 r = n,对应的线性方程组为对应的线性方程组为1122,.nnxdxdxd B 从而从而 bij 都不出现都不出现. .111,212,1,000000n rn rrr n rbbbbbb 121(1)00rrmndddd 前前 r 列列111,212,1,000000n rn rrr n rbbbbbb 12(1)000nmnddd 121(1)00rrmndddd n 列列第二步:第二步:往证往证 R(A) = R(A, b) = n 唯一解唯一解若若 R(A) = R(A, b) = n,故原线性方程组有唯一解故原线性方程组有唯一解 则则 dr+1 =
6、0 且且 bij 都不出现都不出现. . 即即 r = n,100010001000000000B 前前 r 行行后后 mr 行行后后 n - r 列列 n 行行12100010001nddd对应的线性方程组为对应的线性方程组为1122,.nnxdxdxd 后后 mn 行行第三步:第三步:往证往证 R(A) = R(A, b) n 无穷多解无穷多解若若 R(A) = R(A, b) n , 对应的线性方程组为对应的线性方程组为前前 r 列列 则则 dr+1 = 0 . .后后 n - r 列列 即即 r n , 111,1212,2,1,1(1)100010001000000000000000
7、00n rn rrr n rrrmnbbdbbdbbdBd 11111,122112,211,.rn rnrn rnrrrr n rnrxb xbxdxb xbxdxb xbxd B 11111,122112,211,.rn rnrn rnrrrr n rnrxb xbxdxb xbxdxb xbxd 11111,122112,211,.rn rnrn rnrrrr n rnrxb xbxdxb xbxdxb xbxd 令令 xr+1, , xn 作自由变量,则作自由变量,则 再令再令 xr+1 = c1, xr+2 = c2, , xn = cn-r ,则,则 111 11,11 1,11n
8、 rn rrrr n rn rrrnn rxb cbcdxb cbcdxcxc 111,11,1100010n rrr n rrn rbbdbbdcc 线性方程组线性方程组的通解的通解例:例:求解非齐次线性方程组求解非齐次线性方程组12341234123412342 2, 2 4,46224,36979.xxxxxxxxxxxxxxxx 2111210104112140110346224000133697900000rB 解:解:R(A) = R(A, b) = 3 4,故原线性方程组有无穷多解,故原线性方程组有无穷多解2111210104112140110346224000133697900
9、000rB 备注:备注:111,1212,2,1,100010001000000000000000000n rn rrr n rrbbdbbdbbd 有无限多解的充分必要条件是有无限多解的充分必要条件是 R(A) = R(A, b) = r n ,这时,这时 还能根据还能根据R(A) = R(A, b) = r n判断该线性方程组有判断该线性方程组有无限多解吗?无限多解吗?10104011030001300000rB x1x2x3x43410014010130010300000cc 132344,3,3.xxxxx 132344,3,3.xxxxx x1x2x4x3同解同解返回返回 21112
10、10104112140110346224000133697900000rB 解(续):解(续):即得与原方程组同解的方程组即得与原方程组同解的方程组令令 x3 做自由变量,则做自由变量,则 方程组的通解可表示为方程组的通解可表示为 132344,3,3.xxxxx 132344,3,3.xxxxx 123414131003xxcxx 例:例:求解非齐次线性方程组求解非齐次线性方程组12341234123423 1,3 532,2 223.xxxxxxxxxxxx 123111231131532 054012122300002rB 解:解:R(A) = 2,R(A, b) = 3 ,故原线性方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性方程组 PPT 课件
限制150内