《模糊综合评价.doc》由会员分享,可在线阅读,更多相关《模糊综合评价.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除2 模糊综合评价在对许多事物进行客观评判时,其评判因素往往很多,我们不能只根据某一个指标的好坏就作出判断,而应该依据多种因素进行综合评判,如技术方案的选择、经济发展的比较等.模糊综合评判可有效地对受多种因素影响的事物作出全面评价.2.1 理论介绍 模糊综合评判通常包括以下三个方面:设与被评价事物相关的因素有个,记为,称之为因素集。又设所有可能出现的评语有 个,记为,称之为评判集。由于各种因素所处地位不同,作用也不一样,通常考虑用权重来衡量,记为 。1.评判步骤 进行模糊综合评判通常按以下步骤进行:(1)确定因素集。 (2)确定评判集。(3)进行单
2、因素评判得。(4)构造综合评判矩阵:(5)综合评判:对于权重,计算,并根据最大隶属度原则作出评判。2.算子的定义在进行综合评判时,根据算子 的不同定义,可以得到不同的模型。1)模型主因素决定型运算法则为 。该模型评判结果只取决于在总评判中起主要作用的那个因素,其余因素均不影响评判结果,比较适用于单项评判最优就能认为综合评判最优的情形。2)模型主因素突出型运算法则为。该模型与模型I 比较接近,但比模型I更精细些,不仅突出了主要因素,也兼顾了其他因素,比较适用于模型I失效,即不可区别而需要加细时的情形。3)模型加权平均型运算法则为。该模型依权重大小对所有因素均衡兼顾,比较适用于要求总和最大的情形。
3、4)模型取小上界和型运算法则为。使用该模型时,需要注意的是:各个不能取得偏大,否则可能出现均等于1的情形;各个也不能取得太小,否则可能出现均等于各个之和的情形,这将使单因素评判的有关信息丢失。5)模型均衡平均型运算法则为,其中。该模型适用于综合评判矩阵中的元素偏大或偏小时的情景。2.2 案例分析例1 考虑一个服装评判的问题,为此建立因素集,其中表示花色,表示式样,表示耐穿程度,表示价格。建立评判集,其中表示很欢迎,表示较欢迎,表示不太欢迎,表示不欢迎。进行单因素评判的结果如下:设有两类顾客,他们根据自己的喜好对各因素所分配的权重分别为试分析这两类顾客对此服装的喜好程度。分析 由单因素评判构造综
4、合评判矩阵:用模型计算综合评判为根据最大隶属度原则知,第一类顾客对此服装不太欢迎,第二类顾客对此服装则比较欢迎。程序源码:function Example 1A1=0.1 0.2 0.3 0.4;A2=0.4 0.35 0.15 0.1;R=0.2 0.5 0.2 0.1; 0.7 0.2 0.1 0; 0 0.4 0.5 0.1; 0.2 0.3 0.5 0;fuzzy_zhpj(1,A1,R)fuzzy_zhpj(1,A2,R)endfunctionB=fuzzy_zhpj(model,A,R) %模糊综合评判B=;m,s1=size(A);s2,n=size(R);if(s1=s2) d
5、isp(A的列不等于R的行);else if(model=1) %主因素决定型 for(i=1:m) for(j=1:n) B(i,j)=0; for(k=1:s1) x=0; if(A(i,k)R(k,j) x=A(i,k); else x=R(k,j); end if(B(i,j)x) B(i,j)=x; end end end end elseif(model=2) %主因素突出型 for(i=1:m) for(j=1:n) B(i,j)=0; for(k=1:s1) x=A(i,k)*R(k,j); if(B(i,j)x) B(i,j)=x; end end end end elsei
6、f(model=3) %加权平均型 for(i=1:m) for(j=1:n) B(i,j)=0; for(k=1:s1) B(i,j)=B(i,j)+A(i,k)*R(k,j); end end end elseif(model=4) %取小上界和型 for(i=1:m) for(j=1:n) B(i,j)=0; for(k=1:s1) x=0; x=min(A(i,k),R(k,j); B(i,j)=B(i,j)+x; end B(i,j)=min(B(i,j),1); end end elseif(model=5) %均衡平均型 C=; C=sum(R); for(j=1:n) for(
7、i=1:s2) R(i,j)=R(i,j)/C(j); end end for(i=1:m) for(j=1:n) B(i,j)=0; for(k=1:s1) x=0; x=min(A(i,k),R(k,j); B(i,j)=B(i,j)+x; end end end else disp(模型赋值不当); endendend程序输出结果如下:ans= 0.2000 0.3000 0.4000 0.1000ans= 0.3500 0.4000 0.2000 0.1000例 2 某校规定,在对一位教师的评价中,若“好”与“较好”占50%以上,可晋升为教授。教授分教学型教授和科研型教授,在评价指标上
8、给出不同的权重,分别为,。学科评议组由7人组成,对该教师的评价见表1,请判别该教师能否晋升,可晋升为哪一级教授。表1 对该教师的评价好较好一般较差差政治表现42100教学水平61000科研能力00511外语水平22111分析 将评议组7人对每一项的投票按百分比转化为成隶属度得综合评判矩阵:按模型 针对俩个权重分别计算得由于要计算百分比,需要将上述评判结果进一步归一化为如下: 显然,对第一类权重“好”与“较好”占50%以上,故该教师可晋升为教学型教授,程序与例1相同。 输入及结果:%输入评价指标权重矩阵和综合评判矩阵A1=0.2 0.5 0.1 0.2;A2=0.2 0.1 0.5 0.2;R=
9、0.57 0.29 0.14 0 0; 0.86 0.14 0 0 0; 0 0 0.71 0.14 0.14 0.29 0.29 0.14 0.14 0.14 ;fuzzy_zhpj(1,A1,R)fuzzy_zhpj(1,A2,R)程序输出结果如下:ans= 0.5000 0.2000 0.1400 0.1400 0.1400ans= 0.2000 0.2000 0.5000 0.1400 0.1400例3 某产粮区进行耕作制度改革,制定了甲、已、丙三个方案见表2,以表3作为评价指标,5个因素权重定为,请确定应该选择哪一个方案。表2 三个方案方案亩产量(kg/亩)产品质量 亩用工量亩纯收入
10、/元生态影响甲592.5355725乙5292381053丙412132852表3 5个评价标准分数亩产量产品质量亩用工量亩纯收入生态影响55506001130145005502203011013023450500330409011032400450440507090413504005506050705060506分析 根据评价标准建立各指标的隶属函数如下。亩产量的隶属函数:产品质量的隶属函数:亩用工量的隶属函数:亩纯收入的隶属函数:对生态影响的隶属函数:将表2三个方案中数据带入相应隶属函数算出隶属度,从而得到综合评判距阵:根据所给权重按加权平均型计算得根据最大隶属度原则,0.662最大,所对
11、应的是乙方案,故应选择乙方案。程序同例1.输入及结果:%输入评价指标权重矩阵和综合评判距阵A=0.2 0.1 0.15 0.3 0.25;R=0.97 0.716 0.248; 0.6 0.8 1; 0.125 0.55 0.7; 0.275 0.6875 0.4375; 0.2 0.6 0.8;fuzzy_zhpj(3,A,R) %调用综合评判函数程序运行结果如下:ans= 0.4053 0.6620 0.5858 例4 表4是大气污染物评价标准。今测得某日某地以上污染物日均浓度为(0.07,0.20,0.123,5.00,0.08,0.14),各污染物权重为(0.1,0.20,0.3,0.
12、3,0.05,0.05),试判别其污染等级。 表4 大气污染物评价标准 单位污染物级级级级 0.050.150.250.50 0.120.300.501.00 0.100.100.150.30 4.004.006.0010.00 0.050.150.250.50 0.120.160.200.40分析 由于大气中各污染物含量均是越少大气质量越高,可构造各污染物含量对四个等级的隶属函数如下:对级的隶属函数:对级的隶属函数:对级的隶属函数:对级的隶属函数:其中表示6种污染物,如表示第二种污染物的含量对级的隶属度,而依次表示评价标准中各污染物含量。对污染物,其含量,计算其对各等级的隶属度如下:因,故因
13、,故,因,故。同理可计算其他污染物含量对各等级的隶属度,从而得综合评判距阵:结合权重,选择加权平均型进行计算得,根据最大隶属度原则,0.478最大,故当日大气质量为级。程序同例1输入及其结果: A=0.1 0.2 0.3 0.3 0.05 0.05; R=0.8 0.2 0 0;0.56 0.44 0 0;0 0.6 0.4 0;0 0.5 0.5 0;0.7 0.3 0 0;0.5 0.5 0 0;fuzzy_zhpj(3,A,R)程序运行结果如下:ans=0.2520 0.4780 0.2700 02.3 方法评论 模糊综合评价经常用来处理一类选择和排序问题。应用的关键在于模糊综合评价矩阵的建立,它是由单因素评判向量所构成的,简单的情形可按类似于百分比的方式得到,稍复杂一点的情形需要构造隶属函数来进行转化,此时,要注意评判指标的属性,合理选择隶属函数。进行综合评判时,要根据问题的实际情况,选择恰当的模型来进行计算。另外,关于权重,前面的例题都是直接给出的,而实际当中是不会有的。当然,评判者可以自行设定,但若能用到一些数学方法,如层次分析法,将定性和定量相结合,则会显得更加具有说服力。【精品文档】第 10 页
限制150内