Automobile Bodies Can Aluminum Be an Economical Alternative to Steel汽车车身:铝是一种经济的替代钢?.doc
《Automobile Bodies Can Aluminum Be an Economical Alternative to Steel汽车车身:铝是一种经济的替代钢?.doc》由会员分享,可在线阅读,更多相关《Automobile Bodies Can Aluminum Be an Economical Alternative to Steel汽车车身:铝是一种经济的替代钢?.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 机 械 工 程 学 院School of Mechanical Engineering车辆工程Automotive EngineeringNAME: NUM:1008030372 TEL:18798011069Automotive Materials: EconomicsAutomobile Bodies: Can Aluminum Be an Economical Alternative to Steel?Anish Kelkar, Richard Roth, and Joel Clark TABLE OF CONTENTS INTRODUCTION BODY-IN-WHITE METHO
2、DOLOGY ANALYSIS OF SMALL CAR DESIGNS ANALYSIS OF MIDSIZE CAR DESIGNS ECONOMICS OF SUBSTITUTION CONCLUSION ACKNOWLEDGEMENTS References Although the use of aluminum in cars has been increasing for the past two decades, progress has been limited in developing aluminum auto bodies. In fact, most aluminu
3、m substitution has come in the form of castings and forgings in the transmission, wheels, etc. Car manufacturers have developed all-aluminum cars with two competing designs: conventional unibody and the spaceframe. However, aluminum is far from being a material of choice for auto bodies. The substit
4、ution of aluminum for steel is partly influenced by regulatory pressures to meet fuel efficiency standards by reducing vehicle weight, and to meet recycling standards. The key obstacles are the high cost of primary aluminum as compared to steel and added fabrication costs of aluminum panels. Both th
5、e aluminum and the automotive industries have attempted to make aluminum a cost-effective alternative to steel. This paper analyzes the cost of fabrication and assembly of four different aluminum car body designs,making comparisons with conventional steel designs at current aluminum prices and using
6、 current aluminum fabrication technology. It then attempts to determine if aluminum can be an alternative to steel at lower primary aluminum prices, and improved fabrication processes. INTRODUCTION The automobile and aluminum became commercially viable at about the same time in the late years of the
7、 19th century; there are references to the use of the latter in the former from their very beginnings. Although steel is preferred by most automakers, in recent years changing fuel economy and recycling regulations have intensified weight-reduction attempts by automakers. Aluminum offers the ideal e
8、ngineering solution: Its density is one-third that of steel and satisfies the torsion and stiffness requirements of an automotive material. However, aluminum by weight is about five times more expensive than steel.Despite the high cost, in the past two decades the amount of aluminum in automobiles h
9、as increased steadily. Aluminum抯 penetration has increased from 39 kg (3%) in 1976 to about 89 kg (7%) in the mid-90s.1 However this use of aluminum at the expense of steel has been on a part-by-part basis, not the result of any radical design change. Most of the aluminum penetration has been in tra
10、nsmissions, engine blocks, and wheels, largely as castings with some forgings and extrusions. The wrought aluminum sheet penetration, however, is limited to A/C units and a few closure panels for the car body. Simply stated, it is proven that aluminum can be used to replace steel, iron, and copper f
11、or various parts in a car. In all cases, this substitution reduces weight without reducing performance, but in most cases cost increases significantly. That increase can be countered on grounds of reduced fuel consumption and increased ability to carry safety and electronic equipment and increased l
12、ife of a car梚f the user, the manufacturer, and perhaps most importantly, the legislator, deem those factors of sufficient merit.The use of large amounts of aluminum in mass-produced cars, as distinct from expensive, low-volume models, has been frequently predicted but as yet has not come about. The
13、only way aluminum can displace steel with any significance is when aluminum sheet replaces steel as the primary material in the chassis or the body of the car. During the past decade, vehicle manufacturers have repeatedly attempted to assess the status of aluminum vehicles. New types of alloys and a
14、dvanced production techniques have been tested. Interest has been focused mainly on testing suitable joining methods. The Honda NS-X was the first (and only) aluminum vehicle made in a limited production run. The Audi A8 is another latest example of a luxury, low-volume all-aluminum spaceframe desig
15、n car. BODY-IN-WHITEFigure 1. Passenger car mass distribution.While aluminum has been able largely to conquer the drive train and heat exchanger areas, the chassis, body and equipment must be regarded as development areas for lightweight construction using aluminum. The key issue has been optimizing
16、 the design to exploit the advantages of aluminum and, at the same time, be cost effective. As shown in Figure 1, the body-in-white (BIW) accounts for about 27% of the weight of the entire average car. Thus, it is in the BIW that large-scale penetration of aluminum must come about.Part-by-part subst
17、itution of aluminum for steel, although providing the light weight and better corrosion resistance of aluminum, is not the optimal solution. Because cars are still essentially made of steel, a complete redesign of the automobile is necessary to make optimal use of aluminum.Some aluminum and auto com
18、panies have promoted the aluminum space-frame design, using stampings, castings, and extrusions of aluminum. Others have been developing the conventional unibody design, which is predominantly a stamped body, in aluminum. Although both designs have demonstrated their functionality and effectiveness,
19、 it is unclear which design would be economically better suited for mass production. The ultimate success of one or both of the designs depends on the progress and developments in the general area of aluminum fabrication technology, particularly in aluminum stampings. This paper compares and analyze
20、s the fabrication and assembly costs of aluminum and steel auto bodies in two classes: small, fuel-efficient vehicles and mid-size vehicles. METHODOLOGYThe manufacture of the BIW is comprised of two costs: fabricating the parts and assembling the parts. These costs are estimated using a technique de
21、veloped at MIT抯 Materials Systems Laboratory titled technical cost modeling (TCM). Technical cost modeling is a spreadsheet-based analytical tool that breaks down the costs of a manufacturing process into elemental process steps.2,3 The costs associated with each step are derived from a combination
22、of engineering principles and empirical data for manufacturing practices. Factor inputs include design specifications, material parameters (e.g., engineering properties, material prices), processing parameters (e.g., equipment-control parameters, space requirements, power consumption) and production
23、 parameters (e.g., production volumes, scrap rates, down times, maintenance time). Models also take into account the economic opportunity (i.e., cost of capital associated with equipment ownership). Inputs are transformed into estimates of fixed and variable costs for each manufacturing step. Variab
24、le costs include energy, materials, and direct labor; fixed costs cover capital equipment required for the manufacturing process, including machinery, design-specific tooling, building expenses, maintenance, and overhead from indirect labor. In the absence of accurate and site-specific data, the mac
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Automobile Bodies Can Aluminum Be an Economical Alternative to Steel 汽车车身:铝是一种经济的替代钢? 汽车 车身 一种 经济 替代
链接地址:https://www.taowenge.com/p-29893923.html
限制150内