GPS复合时钟分析毕业设计中英文翻译.doc
《GPS复合时钟分析毕业设计中英文翻译.doc》由会员分享,可在线阅读,更多相关《GPS复合时钟分析毕业设计中英文翻译.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、外文原文Hindawi Publishing CorporationInternational Journal of Navigation and ObservationVolume 2008, Article ID 261384,8 pagesdoi:10.1155/2008/261384Research ArticleGPS Composite Clock AnalysisJames R. WrightAnalytical Graphics, In c., 220 Valle y Creek Blvd, E x ton, PA 19341, USA Correspondence shoul
2、d be addressed to James R. Wright, jwrightReceived 30 June 2007; Accepted 6 November 2007Recommended by Demetrios MatsakisCopyright 2008 James R. Wright. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reprod
3、uction in any medium, provided the original work is properly cited.Abstract The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each G
4、PS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful obs e r vabilit y definition is presented, together with new observabilit y theorems, to demonstrate explicitly that GPS time is unobservable. Simulat
5、ed GPS clock phase and frequency deviations, and simulated GPS pseudorange measurements, are used to understand GPS time in terms of Kalman filter estimation errors.1. INTRODUCTIONGPS time is created by processing GPS pseudorange measurements with the operational GPS Kalman filter. Brown 2refers to
6、the object created by the Kalman filter as the GPS composite clock, and to GPS time as the implicit ensemble mean phase of the GPS composite clock. The fundamental goal by the USAF and the USNO is to control GPS time to within a specified bound of UTC/TAI. (I refer to TAI/UTC understanding that UTC
7、has an accumulated discontinuity (a sum of leap seconds) when compared to TAI. But unique two-way transformations between TAI and UTC have been in successful operational use since 1972. I have no need hereinto further distinguish between TAI and UTC.) I present here a quantitative analysis of the GP
8、S composite clock, derived from detailed simulations and associated graphics. GPS clock diffusion coefficient values used here were derived from Allan deviation graphs presented by Oaks et al. 12 in 1998. I refer to them as “realistic,” and in the sequel I claim “realistic” results from their use. F
9、igure 1 presents their diffusion coefficient values and my derivation of associated Allan deviation lines.My interest in the GPS composite clock derives from my interest in performing real-time orbit determination for GPS NAVSTAR spacecraft from ground receiver pseudorange measurements. (James R Wri
10、ght is the architect of ODTK (Orbit Determination Tool Kit), a commercial soft-ware product offered by Analytical Graphics, Inc. (AGI).)The estimation of NAVSTAR orbits would be in complete without the simultaneous estimation of GPS clock parameters. I use simulated GPS clock phase and frequency dev
11、iations, and simulated GPS pseudorange measurements, to study Kalman filter estimation errors.This paper was first prepared for TimeNav07 20 . I am indebted to Charles Greenhall (JPL) for encouragement and help in this work.2. THE COMPLETE ESTIMATION AND CONTROL P ROBLEMThe USNO operates two UTC/TAI
12、 master clocks, each of which provides access to an estimate of UTC/TAI in real time(1 pps). One of these clocks is maintained at the USNO, and the other is maintained at Schriever Air Force Base in Colorado Springs. This enables the USNO to compare UTC/TAI to the phase of each GPS orbital NAVSTAR c
13、lock via GPS pseudorange measurements, by using a UTC/TAI master clock in a USNO GPS ground receiver. Each GPS clock is a member of (internal to) the GPS ensemble of clocks, but the USNO master clock is external to the GPS ensemble of clocks. Because of this, the difference between UTC/TAI and the p
14、hase of each NAVSTAR GPS clock is observable. This difference can be (and is) estimated and quantified. The root mean square (RMS) on these differences quantifies the difference between UTC/TAI and GPS time. Inspection of the differences between UTC/TAI and the phase of each NAVSTAR GPS clock enable
15、s the USNO to identify GPS clocks that require particular frequency-rate control corrections. Use of this knowledge enables the USAF to adjust frequency rates of selected GPS clocks. Currently, the USAF uses an automated bang-bang controller on frequency-rate. (According to Bill Feess, an improvemen
16、t in control can be achieved by replacing the existing “bang-bang controller” with a “proportional controller.”)3. STOCHASTIC CLOCK PHYSICSThe most significant stochastic clock physics are understood in terms of Wiener processes and their integrals .Clock physics are characterized by particular valu
17、es of clock-dependent diffusion coefficients, and are conveniently studied with aid of a relevant clock model that relates diffusioncoefficient values to their underlying Wiener processes. For my presentation here I have selected “The clock model and its relationship with the Allan and related varia
18、nces” presented as an IEEE paper by Zucca and Tavella 19 in 2005.Except for FM flicker noise, this model captures the most significant physics for all GPS clocks. I simulate and validate GPS pseudorange measurements using simulated phase deviations and simulated frequency deviations, according toZuc
19、ca and Tavella.4. KALMAN FILTERSI present my approach for the optimal sequential estimation of clock deviation states and their error covariance functions. Sequential state estimates are generated recursively from two multidimensional stochastic update functions, the time update (TU) and the measure
20、ment update(MU). The TU moves the state estimate and covariance forward with time, accumulating integrals of random clock deviation process noise in the covariance. The MU is performed at a fixed measurement time where the state estimate and covariance are corrected with new observation information.
21、The sequential estimation of GPS clock deviations re-quires the development of a linear TU and nonlinear MU. The nonlinear MU must be linearized locally to enable application of the linear Kalman MU. Kalmans MU derives from Shermans theorem, Shermans theorem derives from Andersons theorem 1, and And
22、ersons theorem derives from the Brunn-Minkowki inequality theorem . The theoretical foundation for my linearized MU derives from these theorems.4.1. Initial conditionsInitialization of all sequential estimators requires the use of an initial state estimate column matrix and an intial state estimate
23、error covariance matrix for time t0.4.2. Linear TU and nonlinear MUThe simultaneous sequential estimation of GPS clock phase and frequency deviation parameters can be studied with the development of a linear TU and nonlinear MU for the clock state estimate subset. This is useful to study clock param
24、eter estimation, as demonstrated in Section 6 .Let denote an n 1 column matrix of state estimate components, where the left subscript j denotes state epoch tj and the right subscript i denotes time-tag ti for the last observation processed, where i, j 0, 1, 2, .Let denote an associated n n square sy
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- GPS复合时钟分析 毕业设计中英文翻译 GPS 复合 时钟 分析 毕业设计 中英文 翻译
限制150内