基于单片机的加热炉温度控制系统设计毕业论文.doc
《基于单片机的加热炉温度控制系统设计毕业论文.doc》由会员分享,可在线阅读,更多相关《基于单片机的加热炉温度控制系统设计毕业论文.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 本科毕业论文(设计)题 目: 基于单片机的加热炉温度控制系统设计学 院: 现代科技学院 专业班级: 电子信息工程0601 学 号: 2006614250308 学生姓名: 指导教师姓名: 指导教师职称: 二零一零 年 六 月 一 日22目录绪 论11 单片机对加热炉温度控制的总体设计22 单片机内部结构及引脚的选择32.1单片机内部模块32.1.1 MCS-51单片机内部结构32.1.2 主电源引脚42.1.3 外接晶体引脚42.1.4 MCS-51 输入/输出引脚42.1.5 MCS-51控制线42.2 单片机外总线结构52.3 MCS-51单片机系统扩展53 硬件系统设计63.1 总体设
2、计63.2 程序存储器的扩展73.3温控模块的设计83.4 8155接口电路83.4.1 8155简介83.4.2 8155的RAM和I/O口地址编码93.5 A/D转换电路103.5.1引脚结构103.6 可控硅控制电路114 软件系统设计134.1 主程序134.2 T0中断服务程序144.3 采样子程序164.4 数字滤波程序165 总结18参考文献19附录20程序清单20绪 论温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主
3、,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。温度是工业对象
4、中的一个重要的被控参数。然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。因此对数据采集的精度和采用的控制方法也不相同。传统的控制方式以不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于它主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。本系统所使用的加热器件是电炉
5、丝,功率为三千瓦,要求温度在4001000。静态控制精度为2.43。本设计使用单片机作为核心进行控制。单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。本系统使用8031单片机,使温度控制大为简便。1 单片机对加热炉温度控制的总体设计加热炉是将物料或工件加热的设备。按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。加热炉按炉温分布,炉膛沿长度方向可分为预热段、加热段和均热段。单片机的温度控制
6、是数字控制系统的一个应用。本系统所使用的加热炉为电加热炉,炉丝功率为3kw,系统要求炉膛恒温,误差为士2,超调量可能小,温度上升较快且有良好的稳定性。单片机温度控制系统是以MS-5l单片机为控制核心,辅以采样反馈电路,驱动电路,晶闸管主电路对电炉炉温进行控制的微机控制系统。系统的原理框图如图1.1所示,其基本控制原理为: :用键盘将温度的设定值送入单片机,启动运行后,通过信号采集电路将温度信号采集到后,送到A/D 转换电路将信号转换成数字量送入单片机系统进行PID 控制运算,将控制量输出,控制电阻炉的加热。给定值采样电路输出温度被控对象晶闸管主电路驱动电路8031控制电路图1.1 原理框图2
7、单片机内部结构及引脚的选择单片微型计算机(Single Chip Microcomputer)简称单片机,是指在一块芯片上集成了中央处理器CPU、随机存储器RAM、程序存储器ROM或EPROM、定时器/计数器、中断控制器及串型和并行I/O接口等部件。单片机主要应用于工业控制领域,用来实现对信号的检测、数据的采集以及对应用对象的控制。它具有体积小、重量轻、价格低、可靠性高、耗电少和灵活机动等许多优点。单片机是微型计算机的一个重要分支,特别适合用于智能控制系统。基于经济上的的考虑,以及本次设计的加热炉的精度要求,选用8031单片机作为中央处理器。8031是MCS51系列单片机的一种型号,在MCS5
8、1系列单片机中还有8051、8032、80C31等。2.1单片机内部模块2.1.1 MCS-51单片机内部结构MCS-51系列单片机组成结构中包含运算器、控制器、片内存储器、4个I/O口、串行图2.1单片机的内部结构框图口、定时器/计数器、中断系统、振荡器等功能部件。图2.1中SP是堆栈指针寄存器,PC是程序计数器,PSW是程序状态字寄存器,DPTR是数据指针寄存器。 2.1.2 主电源引脚Vcc(40脚):接+5V电源正端。Vss(20脚):接+5V电源地端。2.1.3 外接晶体引脚XTAL1(19脚)和XTAL2(18脚):接外部晶振的两个引脚。2.1.4 MCS-51 输入/输出引脚MC
9、S-51单片机有4个I/O端口,共32根I/O线,4个端口都是准双向口。每个口都包含一个锁存器,即专用寄存器P0-P3,一个输出驱动器和输入缓冲器。为方便起见,我们把4个端口和其中的锁存器都统称P0-P3。 在访问片外扩展存储器时,低8位地址和数据由P0口分时传送,高8位地址由P2口传送。在无片外扩展存储器的系统中,这4个口的每一位均可作为双向的I/O口使用。P0口:可作为一般的I/O口用,但应用系统采用外部总线结构时,它分时作低8位地址和8位双向数据总线用。P1口:每一位均可独立作为I/O口。P2口:可作为一般I/O口用,但应用系统采用外部系统采用总线结构时,它分时作为高8位地址线。 P3口
10、:双功能口。作为第一功能使用时同P1口,每一位均可独立作为I/O口。另外,每一位均具有第二功能,每一位的两个功能不能同时使用。2.1.5 MCS-51控制线RST/Vpd(9脚):RST即为RESET,Vpd为备用电源。该引脚为单片机的上电复位或掉电保护端。当单片机震荡工作时,该引脚上将出现持续两个机器周期的高电平,这时可实现复位操作,使单片机回复到初始状态。当Vcc发生故障,降低到低电平规定值或掉电时,该引脚上可接备用电源Vpd(+5V)为内部RAM供电,以保证RAM中的数据不丢失。ALE/PROG(30脚):地址锁存有效信号输出端。ALE在每个机器周期内输出两个脉冲。在访问片外程序存储器期
11、间,下降沿用于控制锁存P0输出端的低八位地址;在不访问片外程序存储器期间,可作为对外输出的时钟脉冲或用于定时目的。 PSEN(29脚):片外程序存储器选通信号输出端,低电平有效。在从外部程序存储器读取指令或常数期间,每个机器周期内该信号有效两次,并通过数据总线P0口读回指令或常数。在访问片外数据存储器期间,该信号将不出现。 EA/VPP(31脚): EA为片外程序存储器选通断。该引脚有效(低电平)时,只选用片外程序存储器,否则单片机上电或复位后选用片内程序存储器。对于片内还有EPROM的机型,在编程期间,此引脚用作12V编程电源Vpp的输入端。2.2 单片机外总线结构微型计算机大多数CPU外部
12、都有单独的地址总线、数据总线和控制总线,而MCS51单片机由于受到芯片管脚的限制,数据线和地址线(低8位)是复用的,而且是I/O口兼用。为了将它们分离开来,以便同单片机之外的芯片正确地相连,常常在单片机外部加地址锁存器来构成与一般CPU相类似的三总线,如图2.2所示。图2.2 单片机外总线结构2.3 MCS-51单片机系统扩展通常情况下,采用MCS-51系列单片机的最小系统只能用于一些很简单的应用场合,在此情况下直接使用单片机内部存储器、数据存储器、定时功能、中断功能、I/O端口等,组成的应用系统的成本较低。单片机系统扩展的方法有并行扩展法和串行扩展法两种。并行扩展法是利用单片机的三种线(AB
13、、DB、CB)进行的系统扩展;串行扩展法是利用SPI三线总线或I2C双总线的串行系统扩展。但是,一般串行接口器件速度慢,在需要高速应用的场合,还是并行扩展法占主导地位。3 硬件系统设计3.1 总体设计系统控制主电路是由8031及其外围芯片,及一些辅助的部分构成的。如图3.1所示。803174Ls3732764过零信号发生器8155ADC0809传感检测电路温控电路电炉键盘与显示图3.1 总体设计原理图3.2 程序存储器的扩展8031片内不带ROM,采用8031芯片时,须扩展程序存储器。用作程序存储器的芯片主要有EPROM和EEPROM。由于EPROM价格低廉、性能可靠,所以设计用EPROM.E
14、PROM是紫外线可擦除电可编程的半导体只读存储器,掉电后信息不会丢失。EPROM中程序一般通过专门编程器可写入。常用的EPROM芯片主要有:2716、2732、2764、27128、27256等。扩展程序存储器时,一般扩展容量大于256字节,因此,除了由P0口提供低8位地址线外,还需由P2口提供若干地址线,最大的扩展范围位64K字节,即需16位地址线。具体方法是CPU应向EPROM提供三种信号线。即A:数据总线:P0口接EPROM的O0-O7。B:地址总线:P0口经锁存器向EPROM提供地址低8位,P2口提供高8位地址以及片选线。C:控制总线:PSEN片外程序存储器取指令控制信号,接EPROM
15、的OE,ALE接锁存器的G。EA接地。结合本次设计,选择扩展的型号为2764。8031与2764的连接图如图3.2所示。图3.2 2764与8031连接图3.3温控模块的设计温度检测元件和变送器的选择和被控温度及精度等级有关。设计采用镍铬/镍铝热电偶,此电偶用于01000的温度测量范围。系统功能和系统的工作工程为:反映炉温的热电偶, 用于采集炉内的温度信号,将采集到的信号经冷端补偿后送运算放大器放大, 由变送器将热电偶信号(温度信号)变为电流输出,再由高精密电流/电压变换器将电流信号变为标准电压信号,将放大的电压送入采样保持器和转换电路后得到与炉温相应的数字量。 具体设计为,将温度传感器输出的
16、电流信号Iin,输入到电流/ 电压转换电路,在采样电阻R1 上获得对应的电压分量VR=R1*Iin,并将该值经过由R2,C1构成的带有一定延时(时间与温度传感器的响应时间相对应) 作用的低通滤波电路后,输入到放大器A1 的正相端。因为传感器输出4mA 时,在取样电阻上的电压不等于零,直接经模拟/数字转换电路转换后的数字量也不等于零,所以单片机不能直接利用,这样利用稳压管产生一个精确基准电压Vref 与R3。RW1构成的可调分压电路,通过调节RW1 可以获得精确的Vx=(Rx/RW1)Vref,该值可用于抵消4mA电流在取样电阻上产生的压降,所以当温度传感器为最小值4mA 时,A1的2 脚与3
17、脚之间的电压差基本为0V。与A1 相连的C2、R3、R4、R5 构成带有积分校正的放大电路,积分校正会增加系统的惯性,对变化较快的信号起阻尼作用。通过适当调整电阻就可以获得理想的比例增益,再将经过处理的温度传感器感测到的电信号VT 放大后,送入下一级的差值放大电路的负相端。系统的炉温工艺曲线经分段换算后转换为对应的电压数据,再经过进制转换后存入E2PROM中。当系统投入运行后,为了实现误差测量,单片机依据时钟定时器,按一定的时间间隔将数据通过总线传至DAC0832 的数据寄存器,经D/A 转换后的模拟电压VTS,从运放A2 送入由A3、R6、R7、R8 和R9 构成的差值检测放大电路的正相端,
18、与经过转换的采样电压值VT 作差,得到的差值VT放大后送入A/D转换器0809。另外,变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0-41.32mV变换成0-10mA范围内的电流;电流/电压变送器用于把毫伏变送器输出的0-10MA电流变换成0-5V范围的电压。为了提高精度,变送器可以进行零点迁移。例如:若温度测量范围为4001000,则热电偶输出为16.4mV-41.32mV,毫伏变送器零点迁移后输出0-10mV范围电流。这样,采用8位A/D转换器就可以使量化误差达到正负2.34度以内。3.4 8155接口电路3.4.1 8155简介8155是Intel公司研制的通用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于单片机的加热炉温度控制系统设计 毕业论文 基于 单片机 加热炉 温度 控制系统 设计
限制150内