初中数学竞赛辅导讲义(初三)【精品推荐】.docx
《初中数学竞赛辅导讲义(初三)【精品推荐】.docx》由会员分享,可在线阅读,更多相关《初中数学竞赛辅导讲义(初三)【精品推荐】.docx(80页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学竞赛辅导讲义(初三)第一讲 分式的运算知识点击1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。3、 分式运算:实质就是分式的通分与约分。例题选讲例1化简 + + 解:原式= + + = - + - + - =例2 已知 = = ,且xyz0,求分式的值。解:易知: = = = 则 (1)+(2)+(3)得:(-2)(x+y+z)=0 =2 或 x+y+z=0若=2则原式= k = 8 若 +=0,则原式= k =-1例3设 =1,求 的值。解:显然X,由已知 =1 ,则 x
2、 + = + 1 = + - = (x +)-2 =( +1)-2- = 2 -1 原式=例4已知多项式3x3 +ax +3x +1 能被x+1整除,求的值。解:1- =0 =1例5:设为正整数,求证 + + + 证:左边=(1 - + - + + - ) =(1- )n为正整数, 11- 1 故左边 小结归纳1、部分分式的通用公式: = ( - )2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。3、整体代换及倒数法是分式的的求值中常用的方法, 应熟练掌握。巩固练习1、若分式的值是正整数
3、, 则整数m= 。2、若 = = = =则k= 。3、已知a-3b = 2ab .(a0,b0),则 = .4、已知a、b、c是有理数,且=, = ,= ,则= 。5、若 - = 2006,则= 。6、实数a、b满足ab=1,设A = + ,B= + +1,则A、B的关系为 。7、当、为何值时,多项式能被除数整除? 8、计算 = 。9、已知= + + , 求A、B、C的值。10、若对于3以外的一切实数X,等式 - = 均成立,则mn = 11、已知 = = ,则 = 。第二讲 分式方程及应用知识点击1、 解分式方程的基本思路是去分母化分式方程为整式方程;2、 解分式的方程的常用方法有:换元法、
4、整体法、通分法等;3、 分式方程广泛应用于生活实际中,要注意未知数的值既要是原方程的根,又要与实际意义相符。例题选讲例1 解方程组 分析:令 =m, =n ,则可得: 易求: 例2 解方程解:原方程可化为两边分别通分: ,易求: = 4例3 当为何值时,关于x的方程的解为正数?解:解方程可得:x=,需 可得1 且m-3。例4 设库池中有待处理的污水a吨,从城区流入库池的污水按每小时b吨的固定流量增加,若同时开动2台机组需30小时处理完污水,同时启动4台机组需10小时处理完污水,若要求在5小时内将污水处理完毕,那么至少要同时开动多少台机组?解:设1台机组每小时处理污水y吨,要在5小时内处理完污水
5、, 至少同时开动x台机组,则: 可得 X 例5 求证对任意自然数n,有2证明:当n=1时,12显然成立。当1时,(-1)所以 故:2点评归纳1、 当某个代数式在一个问题中多次反复出现时,我们可以把这个代数式当作一个整体去替换,使问题简化;2、 假分式构成的分式方程一般先分离整数, 然后等式两边分别通分可解。3、 解分式方程要注意验根,在求分式方程中待定字母的值时往入容易忽略这一点。巩固练习1、某同学用一架不等臂天平称药品, 第一次将左盘放入50g砝码,右盘放药品使天平平衡,第二次将右盘放入50g砝码,左盘放药品使天平平衡,则两次称得药品总质量( )A、等于100g B、大于100g C、小于1
6、00g D、都有可能2、用大小两部抽水机给麦田浇水,先用两部抽水机一起抽水2小时, 再用小抽水机单独抽水1小时即可浇完, 已知单独用小抽水机所用时间是大抽水机单独抽水所需时间的倍,求两部抽水机单独浇完这块麦田各需多少小时?3、解方程 = 4、解方程5、某工厂将总价2000元的甲种原料与总价4800元的乙种原料混合后,其平均价格比原甲种原煤料每斤少3元,比原乙种原料每斤多1元,问混合后的单价。6、自然数m、n是两个不同质数,且m+n+mn的最小值为P,则= 7、已知有因式,则= 8、求的最大值。第三讲 一元二次方程的解法知识点击1、 一元二次方程的常规解法有:直接开平方、配方法、因式分解及求根公
7、式法。2、 对于复杂的一元二次方程往往要借助换元法、和差构造法等。3、 含有字母系数的一元二次方程一般要分类型讨论。4、 设而不求是研究一元二次方程公共解的基本方法。例题选讲例1 解方程解:令,则 =,解得,即或,解得例2 解方程 - =1解:( + )( - )=7 + =7又 - =1+: =4易知:X=1 X= 例3:已知m是方程X -2007X+1=0的一个不为O的根求 -2006m+的值解:为方程的非零根, -2007+1=0可得 =2007-1,+=2007,+1=2007原式=2007-1-2006+=+-1=2007-1=2006例4、设、为实数,那么a+ab+b- 2b的最小
8、值为多少?解:原式:=a+(b-1)a+(b-2b) =(a+) +(b-1)-1当a=o b=1时,最小值为-1例5:解方程(x-x+1)-(x-1)=(-1)解:原方程整理为:(-1)-(2-1)+(+1)=0-(m + 1)(-1)-=0x=+1 或(-1)=1) 当0,1时,x1=,x2=2) =0,= 03) =1时=2例6:方程(2007)2 -20062008X-1=0的较大根为,方程2006x-2007X+1=0的较小根为,求-的值解:方程可化为(2007X+1)(X-1)=0X=- X=1 XX1 m=1方程可化为(2006X-1)(X-1)=0X1 =- X=1 X1 X=
9、n - m = -1=-点评归纳1、 有的方程某部分重复出现,或经过变形后产生重复出现的式子,可通过换元使方程简化而便于求解。2、 含有两个无理根式且可化为一元二次方程的方程,若两个无理式的有理化因式与它的乘积等于一个常数,这时通常可用平方差公式构造两个无理式的和与它们的差,从而加减消去一个根式,可使方程简化并求解。3、 一元一次方程的根是满足方程的未知数的值,由此得到的等式是许多代数式求值的依据,要灵活运用。巩固练习1、 解方程:2x+-3X-= 2、解方程:+= 3、解方程:x-|2X-1|-4= 4、三个二次方程a x+bx+c=0,b x+=0,c x+=0有公共根,求证+=0 5、
10、已知a、b、c均为实数,且满足+|+1|+(+2)=0试求方程a x+-=0的解 6、 求证方程(-)x+(-)x +-=0(ab)有一个根为1。 7、设方程x+px+q=的两根为X1、X2,且I1 =x1 + X2 I2=x+xIn = x+ x则当n3时,求In +PIn-1+qI n-2+的值。8、证明:不论X为何实数,多项式2x4 - 4 x2 - 1的值总大于x4-2x2-4的值。9、已知a-4a+b-+=0,则a-4= 10、已知m、n为有理数,方程x2+mx+n=0有一个根为-2,求m+n的值。11、已知=+5,=+5,求5+ 5的值.12、二次方程a(x+1)(x+2)+b(x
11、+2)(x+3)+c(x+3)(x+1)= 13、解关于x的方程(-1)x2 + 2x+3=0第四讲 根的判别式及根与系数的关系知识点击、设一元二次方程ax+bx+c=0(a0)的两根为X1、 X2,则ax+bx+c = a(X- X1)(X- X2)= ax-(X1+ X2)X+X1X2 X1+ X2= - X1 X2= 这两个式子即为一元二次方程根与系数的关系。要注意,方程有两个实数根是两根关系式存在的前提,即通常要考虑0 、 0这两个前提条件。2、 一元二次方程根的判别式源自求根公式,常记作=b-4ac,使用的前提是方程为一元二次方程,即二次项系数a0,它是解决一元二次方程整数解的工具。
12、3、 使用根的判别式及根与系数的关系时,常常涉及到完全平方数、整数性质、因式分解、因数分解等重要知识与方法。例题选讲例1:已知一直角三角形三边分别为a、b、c,B=90,那么关于X的方程a(X-1)-2CX+b(X+1)=0的根的情况如何?解:方程整理为:(a+b)X-2CX+b-a=0 =4(C+ a-b) B=90 C+ a= b=0 ,原方程有两个相等实根例2:求所有正实数a,使得方程X-aX+4a=0仅有正整数根。解:设方程的两个正整数根为X,y(Xy)则 X-4(+)=0 (-4)(-4)=16 这时x=y=8 a=+=16 这时 a=+=18 这时 a=+=25例3:已知1260,
13、且一元二次方程X-2(+1)+=0,两个整数根,求整数,并求这两个整数根。X=+1为整数 2+1必为完全平方数12 60,252+1121 2+1为奇数2+1=49或2+1=81则 1=24时,X1=32,X2=18 2=40时,X1=50,X2=32例4:设a、b、c是互不相等的非零实数,求证三个方程,aX+2bx+c=0 bX+2cx+a=0C X+2ax+b=0不可能都有两个相等的实数根。证明(一):假设三个方程都有两个相等的实数根。(1)+(2)+(3):2a+2b+2c-2ab-2bc-2ca=0 (-)+(-)+(-)=0 有 =,这与已知条件矛盾所以三个方程不可能都有两个相等的实
14、数根.证明(二):1+2+3=2(+)2+(-)2+(-)2a、b、c为全相等 1+2+301+2+3中至少有一个大于0即至少有一个方程有两个不相等的实数根。例5:已知是方程X2-7X+8=0的两根,且不解方程,利用根与系数的关系求 + 32的值。分析:由+B=7 2=8直接求+3B2的值无法下手,这时,我们常用对偶式+32来构造和差求解: +=7 2=8 2+2=(+)2-2=72-28=33(-)2=(+)2-4=72-48=17又 -= 令M=+32,构造M的对偶式N=+32M+N=( + ) +3(2+ B 2)=100 M-N=( -) +3(2-2)=- (+ )2得 M= 点评归
15、纳1运用一元二次方程根的判别式时,常与配方法结合使用,这时应考虑非负数的性质。4、 运用根与系数的关系求整数解时,因式分解法及分离整数法是求不定方程整数解的常用方法。5、 利用对偶式构造和差法是代数式求值时重要的变形技巧,应灵活运用。巩固练习1、 方程X+PX+q=0的两个根都是正整数,且P+q=1996,试问方程较大根与较小根之比为多少?2、已知一元二次方程a X+bx+c=0(ac0)有两个异号实根和,且|,那么二次方程C X+(-)ax-a=0的根的情况是( )A、没有实根 B、两根同正 C、两根同负 D、两根异号3、关于X的二次方程2 X-5X-a=0的两根之比,X1 :X=2:3则X
16、1 -X= 4、 若方程X-4(-1)X+3-4K0,对于任意有理数都有有理根,求实数K的值。5、求方程X+的实数解。6、若对于任何实数a,关于X的方程,X-2ax-a+2b=0都有实根则实数b的取值范围是( )7、若是不为0的整数,当二次方程X-(-1)X+1=0有有理根时,则=( )、方程| X-5X|=有且只有相异二实根,求a的取值范围9、关于X的方程X+2(-3)+(-2)至少有一个整数解且a是整数,求a的值。10、已知X1、X2是关于X的方程4 X-(3-5)-60的两个实根,且|= 试求的值. 11、设方程4X-2X-3=0的两个根为、,求4的值.12、若、都是实数,且0,abc=
17、1则 、中必有一个大于 . 13、设a+2a-1=0 b4-2b2-1=0 且ab2 1则()2007= 14、已知、为整数,且,方程3 X+3(+)X+4=0的两根、满足关系式(+1)+(+1)=(+1)(+1),试求所有的整数对(a、b)15、关于X的方程,X+(a-6)X+=0 的两根均为整数,求a.16、已知X1、 X2是方程4aX-4ax+4=0的两个实根(1)是否能适当选取a的值,使是(X1-2X2)(X2-2X1)的值为?(2)求使+=的值为整数的整数a的值17、求证:对于任意一矩形A,总存在矩形B,使得矩形A和矩形B的周长之比和面积之比都等于常数K(其中K1)第五讲:一元二次方
18、程的应用知识点击1、 一元二次方程的应用问题,诸如:数字问题、面积问题、增长率问题、方案设计问题等,综合运用一元二次方程的有关知识,是各类考试与竞赛的重要考点,须认真领会。2、 形如AX+Bxy+cy+DX+Ey+F的各项式叫做关于X、y的二元二次多项式,常见的分解方法有双十字相乘法、待定前数法、公式法等。公式法是先将原式整理成关于X(或y)的二次三项式,再运用求根公式。3、 非一次不定方程主要掌握两种情况:二次三项式左边分解成两个因式的乘积,右边分解因数求整数解;分式不定方程,采用整数离析法求整数解。4、 可化为一元二次方程的分式方程要注意方程的特点进行有效的变形,像X+=+这类特殊类型的方
19、程,显然 1时,X1=与X2=就是它的两个根。无理方程通过配方、换元、分解转化为有理方程来解。例题选讲例1:m为何值时,二次三项式x2+2x-2+m(x2-2x+1)是完全平方式?解:原式=()X()()令 =0,即4(1-)-4()()解得=3例2:分解因式Xxy-2y-y-6解:Xxy-2y=()(2y)设原式=()(2y)Xxy-2y=()()比较对应项系数 原式()()例3:在矩形地ABCD中央修建一矩形EFGH花圃,使其面积为这块地面积的一半,且花圃四周的道路宽相等,今无测量工具,只有无刻度的足够长的绳子一条,如何量出道路的宽度?解:设道路宽X,AB=,AD=,(),则(-2X)(-
20、2X)=,8x2 -4()ab=0解得()若(),则()这不可能,舍去这个根。则()量法是:用绳量出AB+BC(即之长),从中减法BD(即);将剩下的绳长对折两次即得到道路宽度X。例4:为何值时,关于X的分式方程+2=0只有一个根?解:原方程整理为2x2-(1-)() 当=(1-)2=0时,=1,方程有两个等根经验符合题意() 当1时,X1=0 X2=有一个为增根代入公分母(X+1)(X-)中可得=0 式=-1所以=-1或=0或=1时,原方程只有一个实根。例5:解方程=解:令= 则= y-7+12=0 y1= 3 y2=4 代入y=得: x1= 81 x2=256例6:表示一个十位数字为X,个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品推荐 初中 数学 竞赛 辅导 讲义 初三 精品 推荐
限制150内