基于单片机的火灾探测和监控系统-外文文献翻译.docx
《基于单片机的火灾探测和监控系统-外文文献翻译.docx》由会员分享,可在线阅读,更多相关《基于单片机的火灾探测和监控系统-外文文献翻译.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、外文文献原稿和译文原稿Multiple single-chip microcomputer approach tofire detection and monitoring systemA.J. AI-Khalili, MSc, PhDD. AI-Khalili, MSc, PhDM.S. Khassem, MScIndexing term : Hazards, Design, Plant condition monitoringAbstract: A complete system for fire detection and alarm monitoring has been propos
2、ed for complex plants. The system uses multiple single chip architecture attached to a party line. The control algorithm is based on a two-level hierarchy of decision making, thus the complexity is distributed. A complete circuit diagram is given for the local and the central station with requiremen
3、ts for the software structure. The design is kept in general form such that it can be adapted to a multitude of plant configurations. It is particularly shown how new developments in technology, especially CMOS single chip devices, are incorporated in the system design to reduce the complexity of th
4、e overall hardware, e.g. by decomposing the system such that lower levels of hierarchy are able to have some autonomy in decision making, and thus a more complex decision is solved in a simple distributed method.1 Detection and alarm devicesA basic fire detection system consists of two parts, detect
5、ion and annunciation. An automatic detection device, such as a heat, smoke or flame detector, ultraviolet or infrared detectors or flame flicker, is based on detectingthe byproduct of a combustion. Smoke detectors, of both ionization and optical types, are the most commonly useddetector devices. Whe
6、n a typical detector of this type enters the alarm state its current consumption increasesfrom the pA to the mA range (say, from a mere 15pA in the dormant mode to 60 mA) in the active mode. Inmany detectors the detector output voltage is well defined under various operating conditions, such as thos
7、egiven in Table 1. The more sensitive the detector, the more susceptible it is to false alarms. In order to control the detector precisely, either of the following methods is used: a coincidence technique can be built into the detector, or a filtering technique such that a logic circuit becomes acti
8、ve only if x alarms are detected within a time period T. The detection technique depends greatly on the location and plant being protected; smoke detectors are used for sleeping areas, infrared or ultraviolet radiation are used when flammable liquids are being handled, heat detectors are used for fi
9、re suppression or extinguishing systems. In general, life and property protection have different approaches.Alarm devices, apart from the usual audible or visible alarms, may incorporate solid state sound reproduction and emergency voice communication or printers that record time, date, location and
10、 other information required by the standard code of practice for fire protection for complex plants. Heaviside 4 has an excellentreview of all types of detectors and extinguisher systems.1.1 Control philosophy and division of labourOur control philosophy is implemented hierarchically. Three levels o
11、f system hierarchy are implemented, with two levels of decision making. There is no communication between equipment on the same level. Interaction between levels occurs by upwards transfer of information regarding the status of the subsystems and downwards transfer of commands. This is shown in Fig.
12、 1 where at level 1 is the central station microcomputer and is the ultimate decision maker (when not in manual mode). At level 2 are the local controllers, which reside in the local stations. At level 3 are the actual detectors and actuators. A manual mode of operation is provided at all levels.Inf
13、ormation regarding the status of all detectors is transmitted on a per area basis to the local controllers. Their information is condensed and transmitted upward to the central microcomputer. Transfer of status is always unidirectional and upwards. Transfer of commands is always unidirectional and d
14、ownwards, with expansion at the local control level. This approach preserves the strict rules of the hierarchy for exact monitoring detection and alarm systems associated with high risk plants.The classification of the two layers of controls is based upon layers of decision making, with respect to t
15、he facts that(a) When the decision time comes, the making and implementation of a decision cannot be postponed(b) The decisions have uncertainty(c) It will isolate local decisions (e.g. locally we might have an alarm although there may be a fault with the system)2 General hardwareI :Fig. 2 depicts o
16、ur design in the simplest of forms. The system uses an open party line approach with four conductor cables going in a loop shared by all the remote devices and the control panel. This approach is simple in concept and is economically feasible. However, one major disadvantage is the dependency on a s
17、ingle cable for power and signaling. In cases where reliability is of extreme importance, two or even three cables taking differentroutes throughout the system may be connected in parallel. Fig. 3 gives the driver circuitry required to derive an expandable bus. This design takes advantage of recent
18、advances in the single chip microcomputer technology to reduce the interface between the central station and the local stations.2. 1 Central control taskA central unit provides a centralized point to monitor and control the system activities. In the system to be described the central control unit se
19、rves a fivefold purpose.(i) It receives information from the local stations and operates the alarms and other output devices.(ii) It notifies the operator in case of system malfunction.(iii) It provides an overall system control manual and automatic.(iu) It provides a system test point of local stat
20、ions and itself.(u) It provides a central point for observation, learning and adaptation.2.2 Local stationsThe local stations can take local decisions regarding recognition of a risk situation, and act independently on local affairs. In this technique we depend on load-type coordination, e.g. the lo
21、wer level units recognize the existence of other decision units on the same level; the central or the top level provides the lower units with a model of the relationship between its action and the response of the system.It is evident that a powerful machine is required at this stage so that all the
22、required functions can be implemented. The availability of the new generation of microchips makes this architecture a feasible solution.A single chip microcomputer was chosen over discrete digital and analogue devices to interface to the field devices and to the central microcomputer. This is the ma
23、in reason that previously this approach was not feasible.In selecting the microcomputer for the local stations, the criterion was the requirement for a chip which contains the most integration of the analogue and digital ports required for the interface and the utilization of CMOS technology owing t
24、o remoteness of the local stations. The choice was the Motorola 68HC11A4, for the following reasons:(a) It is CMOS technology; this reduces power consumption.(b) It has a UART on board; this facilitates serial communication.(e) It has an a/d converter on board; this eliminates an external A/D.(d) It
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 火灾 探测 监控 系统 外文 文献 翻译
限制150内