基于单片机的温度数据采集系统设计毕业设计.doc
《基于单片机的温度数据采集系统设计毕业设计.doc》由会员分享,可在线阅读,更多相关《基于单片机的温度数据采集系统设计毕业设计.doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、毕业设计(论文)基于单片机的温度数据采集系统设计学生姓名 学院名称机电工程学院专业名称电气自动化指导教师 2011年1月8日 摘要单片机已在各行业得到广泛应用,为适应更多的应用领域,厂家采取了在一块单片机芯片上集成多种功能部件和大容量存储器的方法。因而,整个应用系统不需要扩展,而体积变小、可靠性增高,使单片机成为真正意义上的单片机系统。本设计是基于STC89C52单片机和DS185B20实现温度的测量系统,单片机在本系统中作为温度输入和显示控制器件,DS18B20被用作温度数据的采集和温度输出器件。本系统采用单总线操作,线路简单,测量值精确,可实现多点测量,并对温度超过限制值,产生报警和数据采
2、集。本系统被广泛应用于温度控制、温度检测、温度采、消防等系统中。关键词 单片机;数据转换;温度显示I大学毕业设计论文目 录第一章 绪论11.1 本系统功能11.1.1 温度测量功能11.1.2 温度采集功能11.1.3 系统工作流程11.2 本系统优点21.2.1 线路简单21.2.2温度精确2第二章 系统硬件介绍22.1本系统硬件和软件组成22.1.1 硬件组成22.1.2软件组成22.2 STC单片机介绍32.2.1 STC单片机功能介绍32.3 DS18B20数字温度传感器介绍62.3.1 功能介绍62.3.2 DS18B20内部逻辑图102.3.3 DS18B20温度传感器读写时序10
3、2.3.4 DS18B20存储器操作命令122.3.5 DS18B20温度传感器与单片机的接口电路132.4系统工作过程222.4.1 温度的测量222.4.2 温度的采集23第三章 程序框图及C语言程序243.1温度采集系统原理框图243.2温度显示模块243.3读温度子程序253.4温度转换子程序253.5计算温度子程序26结论35致谢36参考文献37附录3829第一章 绪论1.1 系统功能1.1.1 温度测量功能利用DS18B20数字温度传感器实现对温度进行准确的测量,使温度值显示到数码管上。1.1.2 温度采集功能利用DS18B20数字温度传感器进行温度的采集,单片机作为控制器件,数据
4、通过串口(RS232)传至计算机,进行温度的采集。1.1.3系统工作流程,见图1-1系统上电初始化DS18B20进行数据的采集并将数据以二进制的形式传至单片机单片机对数据进行处理数码管进行温度显示通过串口将数据传至计算机图1-1系统工作流程1.2 本系统优点1.2.1 线路简单DS18B20与单片机之间一根导线进行数据传输,不需要对数据进行转换,接线简单。1.2.2 温度测量准确DS18B20的温度分辨率为0.0625,所以对温度值可以进行准确的温度转换。第二章 系统硬件介绍2.1系统硬件及软件组成2.11硬件组成本系统所用的硬件有:见表2-1。表2-1系统硬件清单器件名称数量STC89C52
5、单片机1个74HC573锁存器2个LED发光二级管8个蜂鸣器1个独立键盘5个数码管(两个一组)2个三极管1个DS18B201个MAX233串口芯片1个电容若干电阻若干导线若干2.1.2软件组成软件有:keil软件、windows操作系统和串口调试助手等软件组成。2.2 STC单片机介绍单片机作为微型计算机的一个重要分支,其应用范围很广,发展也很快。1971年Intel公司首次宣布4004的4位微处理器,1974年12月Fairchild(仙童)公司即推出了8位单片机F8,开创了单片机的门户。单片机在我国的应用始于20世纪70年代末,那时我国的科研工作者开始对单片机的应用进行了初期探索,20世纪
6、80年代,单片机在我国得以广泛的应用,各理工科院校陆续开设了有关应用课程。在教学及应用上,Zilog公司生产的Z80CPU成为我国工业控制的主流,以Z80为CPU组成的TP801单板机在教学上及应用领域发挥过巨大作用。20世纪80年代末至90年代初,我国在工业控制领域开始转向使用Intel公司生产的MCS-51。单片机从1976年公布8位机至今不到30年的时间,它没有像微处理器那样从8位、16位,一直发展到32位、64位,8位机目前依然是单片机的主流机型。但是,它突破了原有的集成结构,在内部继承了越来越多的外围电路和外设接口,从而发展成为控制器(MicroController)的体系结构,其发
7、展历程大致分为以下几步:第一阶段:单片机的控索阶段第二阶段:单片机的完善阶段第三阶段:8位单片机的巩固发展及16位单片机的推出阶段第四阶段:微控制器的全面发展阶段单片机已在各行业得到广泛应用,为适应更多的应用领域,厂家采取了在一块单片机芯片上集成多种功能部件和大容量存储器的方法。因而,整个应用系统不需要扩展,而体积变小、可靠性增高,使单片机成为真正意义上的单片机系统2.2.1 STC单片机功能介绍单片机是随着大规模集成电路的出现极其发展,将计算机的CPU,RAM,ROM,定时/计数器和多种I/O接口集成在一片芯片上,形成了芯片级的计算机,因此单片机早期的含义称为单片微型计算机(single c
8、hipmicrocomputer).它拥有优异的性价比、集成度高、体积小、可靠性高、控制功能强、低电压、低功耗的显著优点.主要应用于智能仪器仪表、工业检测控制、机电一体化等方面,并且取得了显著的成果.单片机应用系统可以分为:(1)最小应用系统是指能维持单片机运行的最简单配置的系统。这种系统成本低廉,结构简单,常构成一些简单的控制系统,如开关状态的输入/输出控制等。片内有ROM/EPROM的单片机,其最小应用系统即为配有晶振,复位电路,电源的单个单片机.片内无ROM/EPROM的单片机,其最小应用系统除了外部配置晶振,复位电路,电源外,还应外接EPROM或EEPROM作为程序存储器用.(2)最小
9、功耗应用系统是指为了保证正常运行,系统的功耗最小.(3)典型应用系统是指单片机要完成工业测控功能所必须的硬件结构系统。STC89C52 是一种低功耗、高性能 CMOS8 位微控制器,具有8K 在系统可编程 Flash 存储器。使用 Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上 Flash 允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的 8 位 CPU 和在系统可编程 Flash,使得 STC89C52 为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。STC89C52 具有以下标准功能: 8k 字节 Flash,256 字
10、节 RAM,32 位 I/O 口线,看门狗定时器,2 个数据指针,三个 16 位定时器/计数器一个 6 向量 2 级中断结构,全双工串行口,片内晶振及时钟电路。另外,STC89C52 可降至 0Hz 静态逻辑操作,支持 2 种软件可选择节电模式。空闲模式下,CPU停止工作,允许 RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM 内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。2211引脚结构,见图2-1图2-1单片机封装及引脚结构2212内部逻辑图,见图2-2图2-2内部逻辑图2213 引脚功能描述VCC :电源GND:地P0 口:P0 口是一个
11、8 位漏极开路的双向 I/O 口。作为输出口,每位能驱动 8 个 TTL 逻辑电平。对 P0 端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0 口也被作为低 8 位地址/数据复用。在这种模式下,P0 具有内部上拉电阻。在 flash 编程时,P0 口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。P1 口:P1 口是一个具有内部上拉电阻的 8 位双向 I/O 口,p1 输出缓冲器能驱动 4 个TTL 逻辑电平。对 P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电
12、流(IIL)。此外,P1.0 和 P1.2 分别作定时器/计数器 2 的外部计数输入(P1.0/T2)和时器/计数器 2的触发输入(P1.1/T2EX),具体如下表所示。在 flash 编程和校验时,P1 口接收低 8 位地址字。P2 口:P2 口是一个具有内部上拉电阻的 8 位双向 I/O 口,P2 输出缓冲器能驱动 4 个TTL逻辑电平。对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用 16 位地址读取外部数据存储器(例如执行 MOVX DPTR)时, P2 口送出高八位
13、地址。在这种应用中,P2 口使用很强的内部上拉发送 1。在使用8 位地址(如 MOVX RI)访问外部数据存储器时,P2 口输出 P2 锁存器的内容。在 flash 编程和校验时,P2 口也接收高 8 位地址字节和一些控制信号。P3 口:P3 口是一个具有内部上拉电阻的 8 位双向 I/O 口,p2 输出缓冲器能驱动 4 个TTL 逻辑电平。对 P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。P3 口亦作为 STC89C52 特殊功能(第二功能)使用,如下表所示。在 flash 编程和校验时,P3
14、口也接收一些控制信号。RST:复位输入。晶振工作时,RST 脚持续 2 个机器周期高电平将使单片机复位。看门狗计时完成后,RST 脚输出 96 个晶振周期的高电平。特殊寄存器 AUXR(地址 8EH)上的 DISRTO 位可以使此功能无效。DISRTO 默认状态下,复位高电平有效。ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。在 flash 编程时,此引脚(PROG)也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE 脉冲将会跳过。如果需要,
15、通过将地址为 8EH 的 SFR 的第 0 位置“1”,ALE 操作将无效。这一位置“1”,ALE 仅在执行 MOVX 或 MOVC 指令时有效。否则,ALE 将被微弱拉高。这个 ALE 使能标志位地址为 8EH 的 SFR 的第 0 位)的设置对微控制器处于外部执行模式下无效。PSEN:外部程序存储器选通信号PSEN是外部程序存储器选通信号。当 STC89C52 从外部程序存储器执行外部代码时,PSEN 在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN 将不被激活。 XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。XTAL2:振荡器反相放大器的输出端。2.3 DS18B2
16、0数字温度传感器介绍2.3.1 功能介绍DALLAS最新单线数字温度传感器DS18B20的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持 “一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、 DS1822 “一线总线”字化温度传感器 同DS1820一样,DS18B20也 支持“一线总线”接口,测量温度范围为 -55C+125C,-10+85C范围内,精度为0.5C。DS1822的精度较差为 2C 。现场温度直接以“一线总线”的数字方式传输,大大
17、提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20、 DS1822 的特性 DS18B20可以程序设定912位的分辨率,精度为0.5C。可选更小的方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM
18、,精度降低为2C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序
19、列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625/LSB形式表达,其中S为符号位,见表2-1。表2-1DS18B20内部温度表示形式这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于单片机的温度数据采集系统设计 毕业设计 基于 单片机 温度 数据 采集 系统 设计
限制150内