半球体雪堆融化时间-数学建模.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《半球体雪堆融化时间-数学建模.docx》由会员分享,可在线阅读,更多相关《半球体雪堆融化时间-数学建模.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、半球体雪堆融化时间 系别:土木建筑工程学院 专业:土木(1)班 姓名: 学号:201140610161一、摘要:一个半球体状的雪堆,在阳光下慢慢融化,过程中雪堆始终保持着半球体状,利用微分知识来解决雪堆融化的时间问题,并展开假设,当雪堆融化时保持锥形等其它形状,再次求解。关键词半径,半圆面积,半圆体积,常数,常微分二、 提出问题:一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例系数K0。假设在融化过程中雪堆始终保持着半球体状,已知半径为的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?三、问题分析:在融化过程,根据“一个半球体状的雪堆,其体积融化的速率与半球
2、面面积S成正比,比例系数K0”的条件,我们可以列得方程,显然这里为常微分方程。即可得到基本思路就是:先找到与的关系,将替换的代数式,再利用已知条件“半径为的雪堆在开始融化的3小时内,融化了其体积的,则,”解出的具体表达式,而雪堆全部融化所用的时间,为满足的值,解出n即为所求。四、建模过程1、 模型假设:在融化过程中雪堆始终保持着半球体状;外界因素基本保持不变,即不影响计算结果。 2、符号说明: 小时,0 时刻半球状球体表面面积 时刻半球状球体体积 时刻半球状球体半径 常数3、模型的建立:(1). 一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例系数K0.即。(2). 雪堆始终保持
3、着半球体状,则有,。(3). 半径为的雪堆在开始融化的3小时内,融化了其体积的,则,。(4). 雪堆全部融化所用的时间,为满足的值。4、模型的求解:因为有 解出关系: ( 其中令 )由得:求解常微分方程: (方程左右两边求积)解出: 因为又有 代入:解出常数: 常数代入得: 因为又有,代入解出值:代回解得:最后将代入则:所以 (小时)答:雪堆全部融化需要6小时.参考文献:大学数学实验清华出版社 姜启源 邢文训 谢金星 杨顶辉 编著总结:雪堆融化过程中,无论是保持半球型或圆锥等其它形状,根据计算,所用的融化时间都一样。所以,在日常生活中,在细心观察问题的同时,还要经过运算才能得到真理。怎样写作数
4、学建模竞赛论文一 如何建立数学模型建立数学模型的涉骤和方法建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关。当然,建模的过程也有共性,一般说来大致可以分以下几个步骤:1. 形成问题要建立现实问题的数学模型,首先要对所要解决的问题有一个十分明晰的提法。只有明确问题的背景,尽量弄清对象的特征,掌握有关的数据,确切地了解建立数学模型要达到的目的,才能形成一个比较明晰的“问题”。2. 假设和简化根据对象的特征和建模的目的,对问题进行必要的、合理的假设和简化。现实问题通常是纷繁复杂的,我们必须紧紧抓住本质的因素(起支配作用的因素),忽略次要的因素。此外,一般地说,一个现实问题不经过假
5、设和简化,很难归结为数学问题。因此,有必要对现实问题作一些简化,有时甚至是理想化3 .模型的构建根据所作的假设,分析对象的因果关系,用适当的数学语言刻画对象的内在规律,构建现实问题中各个量之间的数学结构,得到相应的数学模型。这里,有一个应遵循的原则:即尽量采用简单的数学工具。4. 检验和评价数学模型能否反映厡来的现实问题,必须经受多种途径的检验。这里包括:(1).数学结构的正确性,即有没有逻辑上自相矛盾的地方;(2).适合求解,即是否有多解或无解的情况出现;(3).数学方法的可行性,即迭代方法是否收敛,以及算法的复杂性等。而更重要和最困难的问题是检验模型是否真正反映厡来的现实问题。模型必须反映
6、现实,但又不等同于现实;模型必须简化,但过分的简化则使模型远离现实,无法解决现实问题。因此,检验模型的合理性和适用性,对于建模的成败是非常重要的。评价模型的根本标准是看它能否准确地反映现实问题和解决现实问题。此外,是否容易求解也是评价模型的一个重要标准。5. 模型的改进模型在不断检验过程中经过不断修正,逐步趋向完善,这是建模必须遵循的重要规律。一旦在检验中发现问题,人们必须重新审视在建模时所作的假设和简化的合理性,检查是否正确刻画对象内在的量之间的相互关系和服从的客观规律。针对发现的问题作出相应的修正。然后,再次重复上述检验、修改的过程,直到获得某种程度的满意模型为止。6. 模型的求解经过检验
7、,能比较好地反映厡来现实问题的数学模型,最后将通过求解得到数学上的结果;再通过“翻译”回到现实问题,得到相应的结论。模型若能获得解的确切表达式固然最好,但现实中多数场合需依靠电子计算机数值求解。电子计算机技术的飞速发展,使数学模型这一有效的工具得以发扬光大。数学建模的过程是一种创造性思维的过程,对于实际工作者来说,除了需要具有想象力、洞察力、判断力这些属于形象思维、逻辑思维范畴的能力外,直觉和灵感往往不可忽视,这就是人们对新事物的敏锐的领悟、理解、推理和判断。它要求人们具有丰富的知识,实惯用不同的思维方式对问题进行艰苦探索和反复思考。这种能力的培养要依靠长期的积累。此外,用数学模型解决现际问题
8、,还应当注意两方面的情况。一方面,对于不同的实际问题,通常会使用不同的数学模型。但是,有的时候,同一数学模型,往往可以用来解释表面上看来毫不相关的实际问题。另一方面,对于同一实际问题要求不同,则构建的数学模型可能完全不同。二 写作数学建模竞赛论文应注意的问题:1. 论文格式论文的封面:题目 参赛队员: 指导教师:单位:论文的第一页是摘要,第二页开始是论文的正文,论文要有以下几方面的内容:一. 问题的提出二. 问题的分析三. 模型的假设四. 模型的建立五. 模型的求解六. 模型的检验七. 模型的修正八. 模型的评估九. 附录以上各部分内容应该都是要具备的,但有些步骤可以合并在一起。例如:问题的提
9、出与问题的分析,模型的假设与模型的建立,模型的检验与模型的修正等。下面就每一步以及建模过程中应注意的几个问题作一简要介绍。2. 审题:赛题一般有两道(研究生的竞赛有4道题),我们可以从中任选一道,这就面临选哪道题合适的问题。因此,首先必需弄清题目的意义。数学建模的题目有时很长,有时很复杂。不易弄懂它的意义,一般要用几个钟头的时间才能弄清楚它的含义。因此我们要求:(1). 深刻理解题意(2). 弄清题目的实际背景(3) 正确选择题目,根据自身的特长和优势作出决定。要注意不要被题目的繁长的叙述哧住,碰到长的题目要有耐心,要仔细的分析题目的各部分内容、条件和要求。3. 当选定题目后,接下来就应该是对
10、题目进进一步的分析。下面的几项工作是必需要做的:(1). 在弄清问题的背景下,说清事情的来龙去脉。(2). 列出必要的数据,题目所给的数据往往是不够的,还要寻找题目以外的数据。(3). 列出和题目相关的各种条件和变量,分清各变量之间的主从关系。(4). 给出研究对象的关键信息内容。4 . 在分析问题的基础上,提出合理的假设模型是在假设的前提下建立起来的。对情景的说明不可能也不必要提供问题的每一个细节。由题目所提供的假设来建立数学模型还是不够的,还要补充一些假设。假设是建立数学模型很关键的一步,关系到模型的成败和优劣。所以应该仔细地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半球 雪堆 融化 时间 数学 建模
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内