《毕业论文外文翻译-移动机器人车辆.doc》由会员分享,可在线阅读,更多相关《毕业论文外文翻译-移动机器人车辆.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、移动机器人车辆 这一章讨论如何移动机器人平台,它带来一个随时间变化的函数来控制。有许多不同的类型,如61页到63页所示的机器人平台。但我们在本章将考虑只有两种机器人平台具有重要意义。第一种平台是一个轮子,像一辆汽车,在二维世界运行。它可以改变轮子的角度使汽车向前或向后移动并控制方向的变化。第二个平台是一个直升机,在三维运动中,这是一种典型的机器人直升机正变得越来越流行。平台就像一个机器人,因为他们可以很容易地被模仿和控制。 4.1灵活性 我们已经谈到的多样性和移动机器人的运动方式,在这个部分中我们将讨论有关机器人平台的灵活性与及它如何在空间移动。我们先来考虑一下这个简单的例子:一列火车。从一些
2、资料上显示,火车在轨道运行,可以通过它的距离来描述它的位置。通过一个标量参数q,火车可以被完全的描述,叫做广义。集合所有可能的配置就是配置空间,用qC来表示。在这种情况下CR。我们也说火车上有一个自由度,因为q是一个标量。这趟列车也有一个驱动器(电机),驱使它沿轨道向前或向后。火车通过电机和自由度充分的驱动,可以到达任意配置空间,就是说可以沿轨道的任何位置。另一个重要的概念,移动装置T是一套任务空间所有可能的姿势。这项任务空间取决于应用程序或任务。如果我们的任务是沿轨道运动,那么TR。如果我们只关心这个火车的位置,那么在一个平面上TR2。如果我们认为是一个三维世界,那么T SE(3),它的上下
3、移动可以改变高度的变化。不清楚这这种情况下,如果这项任务超出尺寸的空间配置空间,火车就不能达到一个任意的位置,因为火车是不得不沿着固定轨道前进的。既然这样,我们说火车沿着一个移动空间有一个映射q。有趣的是,许多汽车有共同的特性。它们擅长于向前移动,但不擅长于其他方向的移动。汽车、汽垫船、船舶和飞机,它们所有的特点和复杂的操纵都是为了可以向各个方向移动而设计的。这个设计方法是一个非常明智的选择,因为它针对我们最常见的运动车辆。不常见的运动如停车、两艘船的对接或更复杂的飞机着陆,这也不是不可能的,人类可以学习这个技巧。这种类型的设计优点简化非常,特别是执行机构的要求数量越少越好。下一个考虑是气垫船
4、,它的下面有两个螺旋桨,但轴平行但不在同一直线上。提供的总向前力产生的扭矩会使气垫船转向偏移。气垫船在平面移动及其配置上完全是由三个广义坐标表示q =(x, y, ) C。配置空间有三维空间,因此它有三个自由度。气垫船只有两个执行机构,比汽车少一个自由度,因此它是欠驱动系统。利用这个限制方式可以自由移动。在任何时候我们可以控制前进(平行于推力矢量)、加速和旋转。加速度为零的气垫船没有横向加速度,因为它不产生任何侧向推力。然而一些熟练的操纵,就像汽车能在遵循的路线上把它带到开始地方的另一侧。欠驱动系统的优点就是可以减少执行机构的数量,缺点就是是汽车无法直接移动到任何一个地方及其配置的空间,因为它
5、必须遵循一定的路径。如果我们增加了第三个螺旋桨,那么气垫船就可以实现全向移动。气垫船的任务空间就是T SE(2),对于配置空间是等效的。一架直升飞机有四个执行机构。其大小主要是由转轴产生推力矢量控制的横向、纵向循环。第四个驱动器后面的转子提供了一个横摆力矩。直升机的配置可以描述为六个广义坐标q =(x, y, z, r, p, y) C,那是其位置与方向在三维空间的取向角。配置空间CR3S3有六个维度,因此车辆有六个自由度。直升机是欠驱动系统,它没有旋转加速,因为直升机保持自由是不需要操作的,机尾的朝向保持稳定的均衡力,因此可以做俯仰运动。重力就像一个额外的驱动器,它提供一个向下的力,这使得直
6、升机加速侧推力矢量水平分量的垂直分量推力由重力抵消,如果没有重力直升飞机是飞不起来的。直升机的工作空间就是TSE(3)。一个固定翼飞机前进,也有4个极其有效地执行机构:前进、副翼、升降、方向。对飞机来说飞机的推力加速度在不同时刻都会对方向和控制产生不同的影响:方向舵(偏航力矩)、副翼(轧辊扭矩)、升降(旋转扭矩)。飞机的配置空间是相同的,有6个尺寸。欠驱动系统的飞机没有侧向方向的加速。直升机的工作空间就是TSE(3)。在62页的深井热量探测器显示的水下机器人也有一个配置空间C R3 S3 ,是六个维度的,但是相比之下是完全启动的。车辆的执行机构可以运用六个方面对任意一个力及力矩平衡,它可以使任
7、意方向轴的加速。它的工作空间是TSE(3)最后,我们来到了轮子人类伟大的成就。轮子是在公元前3000年左右发明的,两个轮子的车是在公元前2000年左右发明的。今天四个轮子的交通工具是无处不在的,拥有的人数接近十亿。汽车的有效性和我们对它的熟悉让它们可以在平台上自由移动。一辆滚滑驾驶的车辆,比如一辆坦克,可以在危险中移向一边并立即停下来。这是一个机动时变控制策略的特点,是一种不完整的系统。坦克有两个执行机构,就像在每条赛道上,一辆车就是一个欠驱动系统。机动车辆参数表,我们讨论的是在表4.1。第二栏是大量的自由度的车辆或其设置的空间维度,第三栏是大量的执行机构,第四栏的是是否完全驱动的车辆。 Mo
8、bile Robot Vehicles This chapter discusses how a robot platform moves, that is, how its pose changes with time as a function of its control inputs. There are many different types of robot platform as shown on pages 6163 but in this chapter we will consider only two which are important exemplars. The
9、 first is a wheeled vehicle like a car which operates in a 2-dimensional world. It can be propelled forwards or backwards and its heading direction controlled by changing the angle of its steered wheels. The second platform is a quadcopter, a flying vehicle, which is an example of a robot that moves
10、 in 3-dimensional space. Quadcopters are becoming increasing popular as a robot platform since they can be quite easily modelled and controlled. However before we start to discuss these two robot platforms it will be helpful to consider some general, but important, concepts regarding mobility.4.1 lM
11、obility We have already touched on the diversity of mobile robots and their modes of locomotion.In this section we will discuss mobility which is concerned with how a vehicle moves in space. We first consider the simple example of a train. The train moves along rails and its positionis described by
12、its distance along the rail from some datum. The configuration of the train can be completely described by a scalar parameter q which is called its generalized coordinate. The set of all possible configurations is the configuration space, or C-space, denoted by C and qC. In this case CR. We also say
13、 that the train has one degree of freedom since q is a scalar. The train also has one actuator (motor) that propels it forwards or backwards along the rail. With one motor and one degree of freedom the train is fully actuated and can achieve any desired configuration, that is, any position along the
14、 rail. Another important concept is task space which is the set of all possible poses of the vehicle and T. The task space depends on the application or task. If our task was motion along the rail then T R. If we cared only about the position of the train in a plane then T R2. If we considered a 3-d
15、imensional world then T SE(3), and its height changes as it moves up and down hills and its orientation changes as it moves around curves. Clearly for these last two cases the dimensions of the task space exceed the dimensions of the configuration space and the train cannot attain an arbitrarypose s
16、ince it is constrained to move along fixed rails. In these cases we say that the train moves along a manifold in the task space and there is a mapping from q. Interestingly many vehicles share certain characteristics with trains they are good at moving forward but not so good at moving sideways. Car
17、s, hovercrafts, ships and aircraft all exhibit this characteristic and require complex manoeuvring in order to move sideways. Nevertheless this is a very sensible design approach since it caters to the motion we most commonly require of the vehicle. The less common motions such as parking a car, doc
18、king a ship or landing an aircraft are more complex, but not impossible,and humans can learn this skill. The benefit of this type of design comes from simplification and in particular reducing the number of actuators required. Next consider a hovercraft which has two propellors whose axes are parall
19、el but not collinear. The sum of their thrusts provide a forward force and the difference in thrusts generates a yawing torque for steering. The hovercraft moves over a planar surface and its configuration is entirely described by three generalized coordinates q =(x, y, ) C and in this case C R2 S.
20、The configuration space has 3 dimensions and the vehicle therefore has three degrees of freedom. The hovercraft has only two actuators, one fewer than it has degrees of freedom,and it is therefore an under-actuated system. This imposes limitations on the way in which it can move. At any point in tim
21、e we can control the forward (parallel to the thrust vectors) acceleration and the rotational acceleration of the the hovercraft but there is zero sideways (or lateral) acceleration since it does not generate any lateral thrust. Nevertheless with some clever manoeuvring, like with a car, the hovercr
22、aft can follow a path that will take it to a place to one side of where it started. The advantage of under-actuation is the reduced number of actuators, in this case two instead of three.The penalty is that the vehicle cannot move directly to an any point in its configuration space, it must follow s
23、ome path. If we added a third propellor to the hovercraft with its axis normal to the first two then it would be possible to command an arbitraryforward, sideways and rotational acceleration. The task space of the hovercraft is T SE(2) which is equivalent, in this case, to the configuration space. A
24、 helicopter has four actuators. The main rotor generates a thrust vector whose magnitude is controlled by the collective pitch, and the thrust vectors direction is controlled by the lateral and longitudinal cyclic pitch. The fourth actuator, the tail rotor, provides a yawing moment. The helicopters
25、configuration can be described by six generalized coordinates q =(x, y, z, r, p, y) C which is its position and orientation in 3-dimensional space, with orientation expressed in roll-pitch-yaw angles. The configuration space C R3S3 has six dimensions and therefore the vehicle has six degrees of free
26、dom. The helicopter is under-actuated and it has no means to rotationally accelerate in the pitch and roll directions but cleverly these unactuated degrees of freedom are not required for helicopter operation the helicopter naturally maintains stable equilibrium values for roll and pitch angle. Grav
27、ity acts like an additional actuator and provides a constant downward force. This allows the helicopter to accelerate sideways using the horizontal component of its thrust vector, while the vertical component of thrust is counteracted by gravity without gravity a helicopter could not fly sideways. T
28、he task space of the helicopter is T SE(3). A fixed-wing aircraft moves forward very efficiently and also has four actuators(forward thrust, ailerons, elevator and rudder). The aircrafts thrust provides acceleration in the forward direction and the control surfaces exert various moments on the aircr
29、aft: rudder (yaw torque), ailerons (roll torque), elevator (pitch torque). The aircrafts configuration space is the same as the helicopter and has six dimensions. The aircraft is under-actuated and it has no way to accelerate in the lateral direction. The task space of the aircraft is T SE(3).The DE
30、PTHX underwater robot shown on page 62 also has a configuration space C R3 S3 of six dimensions, but by contrast is fully actuated. Its six actuators can exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any direction or about any axis. Its task space is T SE(3). Final
31、ly we come to the wheel one of humanitys greatest achievements. The wheel was invented around 3000 bce and the two wheeled cart was invented around 2000 bce.Today four wheeled vehicles are ubiquitous and the total automobile population of the planet is approaching one billion. The effectiveness of c
32、ars, and our familiarity with them, makes them a natural choice for robot platforms that move across the ground. A skid-steered vehicle, such as a tank, can turn on the spot but to move sideways it would have to stop, turn, proceed, stop then turn this is a manoeuvre or time-varying control strategy
33、 which is the hallmark of a non-holonomic system. The tank has two actuators, one for each track, and just like a car is under-actuated. Mobility parameters for the vehicles that we have discussed are tabulated in Table 4.1.The second column is the number of degrees of freedom of the vehicle or the
34、dimension of its configuration space. The third column is the number of actuators and the fourth column indicates whether or not the vehicle is fully actuated.五分钟搞定5000字毕业论文外文翻译,你想要的工具都在这里!在科研过程中阅读翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:Google“
35、翻译”频道、金山词霸(完整版本)和CNKI“翻译助手。具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。 另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只
36、见树木,不见森林”的误导。四大工具: 1、Google翻译: google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用吧比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译,首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着
37、吧,把你的那支离破碎的翻译在google里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译: CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接拿来用,当然省事了。网址告诉大家,有兴趣的进去看看,你们就会发现其乐无穷!还是很值得用的。 3、网路版金山词霸(不到1M): 4、有道在线翻译
38、:翻译时的速度:这里我谈的是电子版和打印版的翻译速度,按个人翻译速度看,打印版的快些,因为看电子版本一是费眼睛,二是如果我们用电脑,可能还经常时不时玩点游戏,或者整点别的,导致最终SPPEED变慢,再之电脑上一些词典(金山词霸等)在专业翻译方面也不是特别好,所以翻译效果不佳。在此本人建议大家购买清华大学编写的好像是国防工业出版社的那本英汉科学技术词典,基本上挺好用。再加上网站如:google CNKI翻译助手,这样我们的翻译速度会提高不少。具体翻译时的一些技巧(主要是写论文和看论文方面) 大家大概都应预先清楚明白自己专业方向的国内牛人,在这里我强烈建议大家仔细看完这些头上长角的人物的中英文文章
39、,这对你在专业方向的英文和中文互译水平提高有很大帮助。 我们大家最蹩脚的实质上是写英文论文,而非看英文论文,但话说回来我们最终提高还是要从下大工夫看英文论文开始。提到会看,我想它是有窍门的,个人总结如下: 1、把不同方面的论文分夹存放,在看论文时,对论文必须做到看完后完全明白(你重视的论文);懂得其某部分讲了什么(你需要参考的部分论文),在看明白这些论文的情况下,我们大家还得紧接着做的工作就是把论文中你觉得非常巧妙的表达写下来,或者是你论文或许能用到的表达摘记成本。这个本将是你以后的财富。你写论文时再也不会为了一些表达不符合西方表达模式而烦恼。你的论文也降低了被SCI或大牛刊物退稿的几率。不信,你可以试一试 2、把摘记的内容自己编写成检索,这个过程是我们对文章再回顾,而且是对你摘抄的经典妙笔进行梳理的重要阶段。你有了这个过程。写英文论文时,将会有一种信手拈来的感觉。许多文笔我们不需要自己再翻译了。当然前提是你梳理的非常细,而且中英文对照写的比较详细。 3、最后一点就是我们往大成修炼的阶段了,万事不是说成的,它是做出来的。写英文论文也就像我们小学时开始学写作文一样,你不练笔是肯定写不出好作品来的。所以在此我鼓励大家有时尝试着把自己的论文强迫自己写成英文的,一遍不行,可以再修改。最起码到最后你会很满意。呵呵,我想我是这么觉得的。
限制150内