材料的热处理-毕业论文外文翻译.doc
《材料的热处理-毕业论文外文翻译.doc》由会员分享,可在线阅读,更多相关《材料的热处理-毕业论文外文翻译.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、外文资料HEAT TREATMENT OF METALSThe understanding of heat treatment is embrace by the broader study of metallurgy .Metallurgy is the physics, chemistry , and engineering related to metals from ore extraction to the final product . Heat treatment is the operation do heating and cooling a metal in its sol
2、id state to change its physical properties. According to the procedure used, steel can be hardened to resist cutting action and abrasion , or it can be softened to permit machining .With the proper heat treatment internal ductile interior . The analysis of the steel must be known because small perce
3、ntages of certain elements,notably carbon , greatly affect the physical properties .Alloy steels owe their properties to the presence of one or more elements other than carbon, namely nickel, chromium , manganese , molybdenum , tungsten ,silicon , vanadium , and copper . Because of their improved ph
4、ysical properties they are used commercially in many ways not possible with carbon steels.The following discussion applies principally to the heat treatment of ordinary commercial steel known as plain-carbon steels .With this proves the rate of cooling is the controlling factor, produces the opposit
5、e effect .A SIMPLIFIED IRON-CARBON DAGRAMIf we focus only on the materials normally known as steels, a simplified diagram is often used . Those portions of the iron-carbon diagram near the delta region and those above 2% carbon content are of little importance to the engineer and are deleted. A simp
6、lified diagram, such as the one in Fig . 2.1 focuses on the eutectoid region and is quite useful in understanding the properties and processing of steel.The key transition described in this diagram is the decomposition of single-phase austenite ()to the two-phase ferrite plus carbide structure as te
7、mperature drop . Control of this reaction ,which arises due to the drastically different carbon solubilities of austenite and ferrite , enables a wide range of properties to be achieved through heat treatment .To begin to understand these processes , consider s steel of the eutectoid composition , 0
8、.77% carbon , being slow cooled along line in Fig .2.1 At the upper temperatures , only austenite is present , the 0.77% carbon being dissolved in solid solution with the iron . When the steel cools to 727, several changes occur simultaneously . The iron wants to change from the bcc austenite struct
9、ure to the bcc ferrite Structure , but the ferrite san only contain 0.02% carbon in solid solution . The rejected carbon forms the carbon-rich cementite intermetallic with composition.In essence , the net reaction at the eutectoid is: Austenite ferrite +cementiteSince this chemical separation of the
10、 carbon component occurs entirely in the solid state, the resulting structure is a fine mechanical mixture of ferrite and cementite . Speciments prepared by plolishing and etching in a weak solution lf nitric acid and alcohol reveal the lamellar structure lf alternating plates that forms on slow coo
11、ling . This structure is composed of two distinct phases, but has its own set of characteristic properties and goes by the name pearlite , because of its resemblance to mother-of-pearl at low magnification.Steels having less than the eutectoid amount of carbon(less than 0.77%)are known as hypoeutect
12、oid steels . Consider now the transformation of such a material represented by cooling along line y-y in Fig .2.1.At high temperatures , the material is entrirely austenite, but upon cooling enters a region where the stable phases are ferrite and austenite . Tie-line and lever-law calculations show
13、that low-carbon ferrite nucleates and grows, leaving the remaining austenite richer in carbon . At 727C (1341F),the austenite is of eutectoid compositon(0.77%carbon)and further cooling transforms the remaining austenite to pearlite. The resulting structure is a mixture lf primary or proeutectoid fer
14、rite (ferrite that formed above the eutectoid reaction )and regions of pearlite.Hypereutectoid steels are steels that contain greater than the eutectoid amount of carbon. When such a steel cools, as in z-zof Fig .2.1 the process is similar to the hypoeutectoid case, except that the primary or proeut
15、ectoid phase is now cementite instead lf ferrite . As the carbon-rich phase forms, the remaining austenite decreases in carbon content, reaching the eutectoid composition at 727C(1341F).As before, any remaining austenite transforms to pearlite upon slow cooling through this temperature.It should be
16、remembered that the transitions that have been described by the phase diagrams are for equilibrium conditions , which can be approximated by slow cooling , With slow heating, these transitions occur in the revertse manner . However, when alloys are cooled rapidly ,entirely different results may be o
17、btained , because sufficient time is not provided for the normal phase reactions to occur, In such cases , the phase diagram is no longer a useful tool for engineering analysis.HARDENINGHardening is the process of heating p piece of steel to a temperature within or above its critical range and then
18、cooling it rapidly . If the carbon content of the steel is known, the proper temperature to which the steel should be heated may be obtained by reference to the iron-iron carbide phase diagram. However, if the composition of the t steel is unknown, a little preliminary experimentation may be necessa
19、ry to determine the range. A good procedure to follow is to heat-quench a number lf small specimens lf the steel at various temperatures lf the steel at various temperatures and observe the results, either by hardness testing or by microscopic examination. When then correct temperature is obtained ,
20、there will be marked change in hardness and other properties.In any heat-treating operation the rate of heating is important. Heat flows from the exterior to the interior of steel at a definite rate. If the steel is heated too fast, the outside becomes hotter than the interior and uniform structure
21、cannot be obtained. If a piece is irregular in shape, a slow rate is all the more essential to eliminate warping and cracking. The heavier the section, the longer must be the heating time to achieve uniform results. Even after the correct remperature has been reached, the piece should be held at tha
22、t temperature for a sufficient period of time to permit its thickest section to attain a uniform temperature.The hardness obtained from a given treatment depends on the quenching rate, the carbon content , and the work size, In alloy steels the kind and amount lf alloying element influences only the
23、 harden ability (the ability lf the workpiece to be hardened to depths ) lf the steel and does not affect the hardness except in unhardened or partially hardened steels .Steel with low carbon content will not respond appreciably to hardening treatments. As the carbon content in steel increases up to
24、 around 0.60%,the possible hardness can be increased only slightly, because steels above the eutectoid point are made up entirely of pearlite and cementite in the annealed state. Pearlite responds best to heat-treating operations; any steel composed mostly of pearlite can be transformed into a hard
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 热处理 毕业论文 外文 翻译
限制150内