条件概率经典练习.doc
《条件概率经典练习.doc》由会员分享,可在线阅读,更多相关《条件概率经典练习.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除 条件概率例题解析1. 从1, 2, 3, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式 而P(B)=3/15=1/5 , , P(A|B)=9/14.窗体底端窗体顶端2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”,设事件B表示“掷出的三个点数都不一样”.则显然所要求的概率为P(A|B).根据公式 , , P(A|B)=1/2.窗体
2、底端窗体顶端3. 袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件Ai表示“第i次取到白球”. (i=1,2,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3,由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3.而 P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 .由数学归纳法可以知道 P(A1A2AN)=1/(N+1).窗体底端窗体顶端4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从
3、两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,事件B表示“最后取到的是白球”.根据题意 : P(B|A)=5/12 , , P(A)=1/2. . 窗体底端窗体顶端5. 有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件Ai表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 . 事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意 P(A0)=1/10 ,
4、 P(A1)=3/5 , P(A2)=3/10 ; P(B|A0)=2/5 , P(B|A1)=1/2 , P(B|A2)=3/5 ;由全概率公式P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/51/10+1/23/5+3/53/10=13/25.窗体底端窗体顶端6. 袋中装有编号为1, 2, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则 表示“第一次取到的是非1号球”;事件B表示“最后取到的是2号球”.显然 P(A)=1/N, , 且 P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 条件 概率 经典 练习
限制150内