群体灭绝问题中的随机性数学系毕业论文(概率论方向).doc
《群体灭绝问题中的随机性数学系毕业论文(概率论方向).doc》由会员分享,可在线阅读,更多相关《群体灭绝问题中的随机性数学系毕业论文(概率论方向).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、毕业论文(设计)任务书课题内容: 论文选题为群体灭绝问题中的随机性,群体生灭过程是一种应用很广泛的模型,在生物学、生物系统工程学和人口学等领域都有广泛的应用群体生灭是复杂的随机过程,但它是具泊松性质的马尔可夫过程,因而可以用马尔可夫决策规划的理论和方法来研究。动物群体的生灭问题时时刻刻影响着我们,可以将此类问题引申到应用数学的随机过程中去进行模型的计算和模拟。本文应用随机过程中马尔可夫链的简单知识,对生物群体灭绝与马尔可夫链的基本理论进行了研究。 课题任务要求: 严格按照学院对本科生毕业论文(设计)工作进度计划表完成论文定稿。书写论文过程中要积极与指导老师交流联系,杜绝抄袭,力求创新,书写严格
2、按照学院要求的格式完成。论文定稿后,与小组成员经行讨论并交流经验,相互取长补短,共同进步,努力打造创新型论文。主要参考文献(由指导教师选定)1邓集贤,杨维权,邓永录,等.概率论及数理统计M.北京:高等教育出版社,2009.2胡迪鹤. 关于随机环境中的马尔可夫过程的简介J. 数学物理学报,2010(5):121-132. 3胡迪鹤.可数的马尔可夫过程的构造理论J.北京大学学报,1965(2):111-143.4王梓坤.随机过程M. 2版,北京:科学出版社,1978.5王梓坤.生灭过程与马尔科夫链M.北京:科学出版社,1980.6王梓坤.概率论基础及其应用M.北京:科学出版社,1976.7王梓坤.
3、常反马尔可夫过程的若干性质J.数学学报,1965,15(3):93-102.8侯振挺,郭青峰.齐次可列马尔科夫过程M.北京:科学出版社,1978.9邓集贤,杨维权,许刘俊.随机过程M.北京:高等教育出版社,1992.10陈家鑫.应用概率论M.北京:科学出版社,1992.11邓永录.随机模型及其应用M.北京:高等教育出版社,1994.12蒋庆琅.随机过程与生命科学模型M.上海:上海翻译出版有限公司,1987.13孙荣恒.随机过程及其应用M.北京:清华大学出版社,2004.14孙荣恒.概率论和数理统计.重庆:重庆大学出版社,2000.15孙荣恒.应用数理统计M.2版,北京:科学出版社,2003.1
4、6Perzen E.随机过程M.北京:高等教育出版社,1987.17谢尔登罗斯.概率论初级教程M.北京:人民教育出版社,1980.18William Feller.概率论及其应用M.北京:高等教育出版社,1979.19杨超群.一类生灭过程J.数学学报,1965,15(1):9-31.20杨超群.关于生灭过程构造论的注记J.数学学报,1965,15(2):174-187.21杨超群.生灭过程的性质J.数学进展,1966,9(4):423-452.同组设计者:无 注:此表由学生本人按指导教师下达的任务填写打印。毕业论文(设计) 开题报告一、 选题理由数学是研究数量、结构、变化以及空间模型等概念的一
5、门学科。随机过程是随机数学(研究随机现象统计规律性的一个数学分支)的一个重要部分,随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。如今随机过程论是在自然科学、工程科学及社会科学各领域研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。足见应用数学中的随机过程在当今社会科学影响下的重要作用。如今人类以及动物种群的的生灭问题时时刻刻影响着我们,而我们可以将此类问题引申到应用数学的随机过程中去进行模型的计算和模拟。在
6、研究随机过程时我们可以透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。显然这样得出的数据会对整个自然社会的发展起到至关重要的作用。本文选题为群体灭绝问题中的随机性,群体生灭过程是一种应用很广泛的模型,在生物学、生物系统工程学和人口学等领域都有广泛的应用群体生灭是复杂的随机过程,但它是具泊松性质的马尔可夫过程,因而可以用马尔可夫决策规划的理论和方法来研究。1907年前后,马尔可夫(Markov)研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。马尔可夫链是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情
7、况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。这种链之所以重要,一是由于它的理论比较完整深入,可以作为一般马尔可夫过程及其它随机过程的借鉴,二是它在自然科学和许多实际问题的广泛应用。关于生灭过程研究的结果已经十分丰富了,物理、化学、生物、医学等的许多实际模型都可以用生灭过程来描述。本文运用马尔可夫链的简单知识,对生物群体灭绝与马尔可夫链的基本理论进行了研究。文中将生物概率与数学理论中的随机过程联系起来,最后通过分析论证并得到群体灭绝概率的一般通式。最后我还将研究的结论应用到实例及数学理论计算中。数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球
8、之变,日用之繁,无处不用数学。在我们的生活中,处处存在数学知识。正式出于应用数学与我们生活的紧密联系,才让我选择了这个题目。希望借此对群体灭绝与所学的东西联系起来,同时也加深了自己对数学这门自然科学的认识。因为数学可以帮助我们更好地认识自然和人类社会,更好的适应生活,所以在本文中我也是尝试着用所学的高等数学知识去分析生活中存在的问题。因为知识有限,很可能文中存在着不少的问题,但自己会坚持把应用数学的知识发扬到生活中去。二、 国内外研究现状综述随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。这一学科最早源于对物理学随机过程理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来
9、爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。随机过程一般理论的研究通常认为开始于20世纪30年代。1931年,柯尔莫哥洛夫发表了概率论的解析方法,1934年A辛饮发表了平稳过程的相关理论,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。1953年,杜布出版了名著随机过程论,系统且严格地叙述了随机过程基本理论。本文主要应用了随机过程中很重要的一部分知识马尔可夫链。马尔可夫链,因安德烈马尔可夫(A.A.Markov,18561922)得名
10、,是数学中具有马尔可夫性质的离散时间随机过程。马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算术编码(著名的LZMA数据压缩算法就使用了马尔可夫链与类似于算术编码的区间编码)。马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。马尔可夫链最近的应用是在地理统计学(geostatistics)中。其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。这一应用类
11、似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。这一马尔可夫链地理统计学方法仍在发展过程中。国内在这方面研究取得前沿成绩的代表主要是中国科学院院士王梓坤。50至60年代,王梓坤在生灭过程研究中提出了极限过渡构造方法,以此解决了生灭过程的构造问题。他还将差分和递推方法应用于生灭过程的泛函和首达时分布的研究,得到了一系列结果。在马氏过程方面,王梓坤证明某些马氏过程的常返性等价于其有限调和函数为常数,而0-1律等价于其有限过分函数为常数。80年代,王梓坤和他的小组研究布朗运动与位势理论和多参数马氏过程。1980年他与R.K.Getoor几乎同
12、时独立地解决了布朗运动的首出时与末离时的联合分布问题。1984年他利用多重随机积分给出了多指标Ornstein-Uhlenbeck过程的定义,并取得了一系列的成果。国外J.B.Walsh于1986年也提出了基本上一致的定义。后来王梓坤又将两种定义作了统一的处理。1980年,王梓坤的研究专著生灭过程与马尔可夫链作为“纯粹数学与应用数学专著”丛书的第5号由科学出版社出版。四十多年来,北京师范大学王梓坤的概率论研究群体发展了无穷粒子系统、马尔可夫过程和随机分析等具有特色的研究方向,形成了勤奋严谨、奋发向上、团结互助的科学传统。马氏过程研究组的工作涉及生灭过程与马氏链、马氏过程与位势理论、多参数马氏过
13、程、测度值马氏过程、数理金融、计算机模拟与统计预报等领域。研究内容为“物理、生物和金融中的随机模型”。三、 设计(论文)方案 在指导老师的悉心指导下,论文分以下三个阶段完成。1、 与指导老师积极的交流联系,由指导老师选定参考文献。自己常到图书馆借阅文献资料,为论文搜集整理丰富的参考资料,为后期书写论文工作打好坚实的基础。2、 在第一步的基础上书写论文初稿,并时常与指导老师联系,及时向指导老师反映论文进展情况。论文要求真实有效,杜绝抄袭。书写过程认真按照学院格式要求经行,力求创新。3、 初稿定稿后,与指导老师展开讨论,经行2次后3次修稿。认真按照指导老师要求完成任务,不抱怨、不气馁,反复修改论文
14、直至定稿。 论文定稿后,与小组成员经行讨论并交流经验,相互取长补短,共同进步,努力打造创新型论文。四、 重点难点及创新之处1、应用全新的知识点马尔可夫链来研究群体灭绝的问题。2、关于生灭过程研究的结果已经现在已经十分丰富了。本文也只是应用马尔可夫链的简单知识来讨论群体灭绝的概率。文章最后得到了当时,即第一代总个体是为1时,群体灭绝的概率通式,并对其进行了探究很论证。3、最后将结论应用到生活实例及数学理论计中。五、 应收集资料及参考文献(不低于20篇)1邓集贤,杨维权,邓永录,等.概率论及数理统计M.北京:高等教育出版社,2009.2胡迪鹤. 关于随机环境中的马尔可夫过程的简介J. 数学物理学报
15、,2010(5):121-132. 3胡迪鹤.可数的马尔可夫过程的构造理论J.北京大学学报,1965(2):111-143.4王梓坤.随机过程M. 2版,北京:科学出版社,1978.5王梓坤.生灭过程与马尔科夫链M.北京:科学出版社,1980.6王梓坤.概率论基础及其应用M.北京:科学出版社,1976.7王梓坤.常反马尔可夫过程的若干性质J.数学学报,1965,15(3):93-102.8侯振挺,郭青峰.齐次可列马尔科夫过程M.北京:科学出版社,1978.9邓集贤,杨维权,许刘俊.随机过程M.北京:高等教育出版社,1992.10陈家鑫.应用概率论M.北京:科学出版社,1992.11邓永录.随机
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 群体灭绝问题中的随机性 数学系毕业论文概率论方向 群体 灭绝 问题 中的 随机性 数学系 毕业论文 概率论 方向
限制150内