高三总复习直线与圆的方程知识点总结.doc
《高三总复习直线与圆的方程知识点总结.doc》由会员分享,可在线阅读,更多相关《高三总复习直线与圆的方程知识点总结.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高三总复习直线与圆的方程知识点总结直线与圆的方程直线与圆的方程一、直线的方程1、倾斜角: L ,范围0, 若轴或与轴重合时,=00。2、斜率: k=tan 与的关系:=0=0已知L上两点P1(x1,y1) 0P2(x2,y2) =不存在 k= 当=时,=900,不存在。当时,=arctank,0时,=+arctank3、截距(略)曲线过原点横纵截距都为0。4、直线方程
2、的几种形式已知方程说明几种特殊位置的直线斜截式K、bY=kx+b不含y轴和行平于y轴的直线x轴:y=0点斜式P1=(x1,y1) ky-y1=k(x-x1)不含y轴和平行于y轴的直线y轴:x=0两点式P1(x1,y1)P2(x2,y2)不含坐标辆和平行于坐标轴的直线平行于x轴:y=b截距式a、b不含坐标轴、平行于坐标轴和过原点的直线平行于y轴:x=a过原点:y=kx一般式Ax+by+c=0A、B不同时为0两个重要结论:平面内任何一条直线的方程都是关于x、y的二元一次方程。任何一个关于x、y的二元一次方程都表示一条直线。5、直线系:(1)共点直线系方程:p0(x0,y0)为定值,k为参数y-y0
3、=k(x-x0) 特别:y=kx+b,表示过(0、b)的直线系(不含y轴)(2)平行直线系:y=kx+b,k为定值,b为参数。AX+BY+入=0表示与Ax+By+C=0 平行的直线系BX-AY+入=0表示与AX+BY+C垂直的直线系(3)过L1,L2交点的直线系A1x+B1y+C1+入(A2X+B2Y+C2)=0(不含L2)6、三点共线的判定:,KAB=KBC,写出过其中两点的方程,再验证第三点在直线上。二、两直线的位置关系1、L1:y=k1x+b1L2:y=k2x+b2L1:A1X+B1Y+C1=0L2:A2X+B2Y+C2=0L1与L2组成的方程组平行K1=k2且b1b2无解重合K1=k2
4、且b1=b2有无数多解相交K1k2有唯一解垂直K1k2=-1A1A2+B1B2=0(说明:当直线平行于坐标轴时,要单独考虑)2、L1到L2的角为0,则()3、夹角:4、点到直线距离:(已知点(p0(x0,y0),L:AX+BY+C=0)两行平线间距离:L1=AX+BY+C1=0 L2:AX+BY+C2=0与AX+BY+C=0平行且距离为d的直线方程为Ax+By+C与AX+BY+C1=0和AX+BY+C2=0平行且距离相等的直线方程是5、对称:(1)点关于点对称:p(x1,y1)关于M(x0,y0)的对称(2)点关于线的对称:设p(a、b)对称轴对称点对称轴对称点X轴Y=-xY轴X=m(m0)y
5、=xy=n(n0)一般方法:如图:(思路1)设P点关于L的对称点为P0(x0,y0) 则 Kpp0KL=1P, P0中点满足L方程 解出P0(x0,y0)(思路2)写出过PL的垂线方程,先求垂足,然后用中点坐标公式求出P0(x0,y0)的坐标。PyL P0x(3)直线关于点对称L:AX+BY+C=0关于点P(X0、Y0)的对称直线:A(2X0-X)+B(2Y0-Y)+C=0(4)直线关于直线对称几种特殊位置的对称:已知曲线f(x、y)=0关于x轴对称曲线是f(x、-y)=0 关于y=x对称曲线是f(y、x)=0关于y轴对称曲线是f(-x、y)=0 关于y= -x对称曲线是f(-y、-x)=0关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三总 复习 直线 方程 知识点 总结
限制150内