高中数学选修2-1学案.doc
《高中数学选修2-1学案.doc》由会员分享,可在线阅读,更多相关《高中数学选修2-1学案.doc(240页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学选修2-1学案高中数学选修2-1学案1.1.1 命题及四种命题 学习目标 1. 掌握命题、真命题及假命题的概念;2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题.二、新课导学 学习探究1.在数学中,我们把用 、 、或 表达的,可以 的 叫做命题.其中 的语句叫做真命题, 的语句叫做假命题练习:下列语句中:(1)若直线,则直线和直线无公
2、共点;(2)(3)垂直于同一条直线的两个平面平行;(4)若,则;(5)两个全等三角形的面积相等;(6)能被整除.其中真命题有 ,假命题有 2.命题的数学形式:“ 若则”命题中的叫做命题的 ,叫做命题的 .3.四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做 , 其中一个命题叫做原命题,那么另一个命题叫做原命题的 原命题为:“若,则”,则逆命题为:“ ”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做 ,其中一个命题叫做原命题,那么另一个命题叫做原命题的 .若原命题为:“若则”,则否
3、命题为:“ ”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命叫做 ,其中一个命题叫做原命题,那么另一个命题叫做原命题的 .若原命题为:“若则”,则逆否命题为“ ”练习:下列四个命题:(1)若是正弦函数,则是周期函数;(2)若是周期函数,则是正弦函数;(3)若不是正弦函数,则不是周期函数;(4)若不是周期函数,则不是正弦函数.(1)(2)互为 (1)(3)互为 _(1)(4)互为 (2)(3)互为 _ 典型例题例1:下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)指数函数是增函数吗?(4)若空间有
4、两条直线不相交,则这两条直线平行; (5);(6).命题有 ,真命题有 . 假命题有 .例2 指出下列命题中的条件和结论:(1)若整数能被2整除,则是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件: 结论: (2)条件: 结论: 变式:将下列命题改写成“若,则”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等. 动手试试1.判断下列命题的真假:(1) 能被6整除的整数一定能被3整除;(2) 若一个四边形的四条边相等,则这个四边形是正方形;(3) 二次函数的图象是一条抛物线;(4) 两个内角等于的三角形是等腰直角三角形.2.
5、把下列命题改写成“若,则”的形式,并判断它们的真假.(1) 等腰三角形两腰的中线相等;(2) 偶函数的图象关于轴对称;(3) 垂直于同一个平面的两个平面平行.例3 命题:“已知、是实数,若,则”.写出逆命题、否命题、逆否命题.变式:设原命题为“已知、是实数,若是无理数,则、都是无理数”,写出它的逆命题、否命题、逆否命题. 动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被5整除;(2)若一个三角形有两条边相等,则这个三角形有两个角相等;(3)奇函数的图像关于原点对称.小结:判断一个语句是不是命题注意两点:(1)是否是陈述句;(2)是否可
6、以判断真假. 当堂检测1.下列语名中不是命题的是( ).A. B.正弦函数是周期函数C. D.2.设、是两个集合,则下列命题是真命题的是( ).A.如果,那么B.如果,那么C.如果,那么D.,那么3.下面命题已写成“若,则”的形式的是( ).A.能被5整除的数的末位是5B.到线段两个端点距离相等的点在线段的垂直平分线上C.若一个等式的两边都乘以同一个数,则所得的结果仍是等式D.圆心到圆的切线的距离等于半径4.下列语句中:(1)是有理数(2)是个大数(3)好人一生平安(4)能被整除,其中是命题的序号是 5.将“偶函数的图象关于轴对称”写成“若,则”的形式,则: ,: 课后作业 1.写出下列命题的
7、逆命题、否命题和逆否命题,并判断它们的真假(1)若都是偶数,则是偶数;(2)若,则方程有实数根.2.把下列命题改写成“若,则”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等.1.1.2 四种命题间的相互关系 学习目标 1掌握四种命题的内在联系;2. 能分析逆命题、否命题和逆否命题的相互关系,并能利用等价关系转化. 学习过程 一、课前准备复习1:四种命题命题表述形式原命题若,则逆命题否命题逆否命题请填(1)(2)(3)空格.复习2:判断命题“若,则有实根”的逆命题的真假.二、新课导学 学习探究1:分
8、析下列四个命题之间的关系(1)若是正弦函数,则是周期函数;(2)若是周期函数,则是正弦函数;(3)若不是正弦函数,则不是周期函数;(4)若不是周期函数,则不是正弦函数.(1)(2)互为 (1)(3)互为 (1)(4)互为 (2)(3)互为 . 通过上例分析我们可以得出四种命题之间有如下关系:2、四种命题的真假性:学习探究: 以“若,则”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假并总结其规律性.通过上例真假性可总结如:原命题逆命题否命题逆否命题真真假假四上表可知四种命题的真假性之间有如下关系:(1) .(2) .练习:判断下列命题的真假.(1)命题“在中,若,则”的逆命题;
9、(2)命题“若,则且”的否命题;(3)命题“若且,则”的逆否命题;(4)命题“若且,则”的逆命题.反思:(1)直接判断(2)互为逆否命题的两个命题等价来判断. 典型例题例1 证明:若,则.变式:判断命题“若,则”是真命题还是假命题?.例2 已知函数在上是增函数,对于命题“若,则.”(1) 写出逆命题,判断其真假,并证明你的结论.(2) 写出其逆否命题,并证明你的结论.变式:证明:若,则动手试试1.求证:若一个三角形的两条边不等,这两条边所对的角也不相等.2.命题“如果,那么”的逆否命题是A.如果,那么B.如果,那么C.如果,那么D.如果,那么三、总结提升: 学习小结这节课你学到了一些什么?你想
10、进一步探究的问题是什么?当堂检测1. 命题“若且,则”的否命题是( ).A.若,则B.若,则C.若至少有一个不大于0,则D.若至少有一个小于0,或等于0,则2. 命题“正数的平方根不等于0”是命题“若不是正数,则它的平方根等于0”的( ).A.逆命题 B.否命题 C.逆否命题 D.等价命题3. 用反法证明命题“是无理数”时,假设正确的是( ).A.假设是有理数 B.假设是有理数C.假设或是有理数 D.假设是有理数4. 若,则的逆命题是 否命题是 5.命题“若,则”的否命题为 课后作业 1. 已知是实数,若有非空解集,则,写出该命题的逆命题、否命题、逆否命题并判断其真假.2.证明:在四边形中,若
11、,则.1.2.1 充分条件与必要条件 学习目标 1. 理解必要条件和充分条件的意义;2. 能判断两个命题之间的关系. 学习过程 一、课前准备复习1:请同学们画出四种命题的相互关系图.复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若,则”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假.二、新课导学 学习探究探究任务:充分条件和必要条件的概念问题:1. 命题“若,则”(1)判断该命题的真假;(2)改写成“若,则”的形式,则: : (3)如果该命题是真命题,则该命题可记为: 读作: 2.命题“若,则”(1)判断该命题的真假;(2)改写成“若,则”的形式,则:
12、 : (3)如果该命题是真命题,则该命题可记为: 读作: 新知:一般地,“若,则”为真命题,是指由 通过推理可以得出.我们就说,由推出,记作,并且说是的 ,是的_试试:用符号“”与“”填空:(1) ;(2) 内错角相等 两直线平行;(3) 整数能被6整除 的个位数字为偶数;(4) . 典型例题例1 下列“若,则”形式的命题中,哪些命题中的是的充分条件?(1)若,则;(2)若,则在上为增函数;(3)若为无理数,则为无理数.练习:下列“若,则”的形式的命题中,哪些命题中的是的充分条件?(1)若两条直线的斜率相等,则这两条直线平行;(2)若,则例2 下列“若,则”形式的命题中哪些命题中的是必要条件?
13、(1)若,则;(2)若两个三角形全等,则这两个三角形面积相等;(3)若,则练习:下列“若,则”形式的命题中哪些命题中的是必要条件?(1)若是无理数,则是无理数;(2)若,则.小结:判断命题的真假是解题的关键. 动手试试练1. 判断下列命题的真假.(1)是的必要条件;(2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件;(3)是的充分条件;(4)是的充分条件.练2. 下列各题中,是的什么条件?(1):,:;(2):,:;(3):,:;(4):三角形是等边三角形,:三角形是等腰三角形.三、总结提升 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么? 知识拓展设为两个集合,集合,那
14、么是的 条件,是的 条件. 当堂检测1. 在平面内,下列哪个是“四边形是矩形”的充分条件?( ).A.平行四边形对角线相等B.四边形两组对边相等C.四边形的对角线互相平分D.四边形的对角线垂直2.,下列各式中哪个是“”的必要条件?( ).A. B.C. D.3.平面平面的一个充分条件是( ).A.存在一条直线B.存在一条直线C.存在两条平行直线D.存在两条异面直线4.:,:,是的 条件.5. :两个三角形相似;:两个三角形全等, 是的 条件. 课后作业 1. 判断下列命题的真假(1)“”是“”的充分条件;(2)“”是“”的必要条件.2. 已知满足条件,满足条件.(1)如果,那么是的什么条件?(
15、2)如果,那么是的什么条件?1.2.2 充要条件 学习目标 1. 理解充要条件的概念;2. 掌握充要条件的证明方法,既要证明充分性又要证明必要性. 学习过程 一、课前准备(预习教材P11 P12,找出疑惑之处)复习1:什么是充分条件和必要条件?复习2:一个四边形是矩形:四边形的对角线相等.是的什么条件?二、新课导学 学习探究探究任务一:充要条件概念问题:已知:整数是6的倍数,:整数是2 和3的倍数.那么是的什么条件?又是的什么条件?新知:如果,那么与互为 试试:下列形如“若,则”的命题是真命题吗?它的逆命题是真命题吗?是的什么条件?(1)若平面外一条直线与平面内一条直线平行,则直线与平面平行;
16、(2)若直线与平面内两条直线垂直,则直线 与平面垂直.反思:充要条件的实质是原命题和逆命题均为真命题. 典型例题例1 下列各题中,哪些是的充要条件?(1) : ,:函数是偶函数;(2) : :(3) : , :变式:下列形如“若,则”的命题是真命题吗?它的逆命题是真命题吗?哪些是的充要条件?(1) : ,:;(2) : 在 :(3) : , :小结:判断是否充要条件两种方法(1)且;(2)原命题、逆命题均为真命题;(3) 用逆否命题转化.练习:在下列各题中, 是的充要条件?(1) : , :(2) : , :(3) : , :(4) : 是方程的根 :例2 已知:的半径为,圆心O到直线的距离为
17、.求证:是直线与相切的充要条件.变式:已知:的半径为,圆心O到直线的距离为,证明:(1)若,则直线与相切.(2)若直线与相切,则小结:证明充要条件既要证明充分性又要证明必要性. 动手试试练1. 下列各题中是的什么条件?(1):,:;(2):,: ;(3):,: ;(4):三角形是等边三角形,:三角形是等腰三角形. 练2. 求圆经过原点的充要条件.三、总结提升 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么? 知识拓展设、为两个集合,集合是指,则“”与“”互为 件. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修
限制150内