高考备考:高中数学易错点梳理附详细解析.doc
《高考备考:高中数学易错点梳理附详细解析.doc》由会员分享,可在线阅读,更多相关《高考备考:高中数学易错点梳理附详细解析.doc(150页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考备考:高中数学易错点梳理附详细解析高中数学中的易忘、易错、易混点分析2016年高考备考:高中数学易错点梳理附详细解析一、集合与简易逻辑易错点1 对集合表示方法理解存在偏差【问题】1: 已知,求。错解:剖析:概念模糊,未能真正理解集合的本质。正确结果:【问题】2: 已知,求。错解: 正确答案:剖析:审题不慎,忽视代表元素,误认为为点集。反思:对集合表示法部分学生只从
2、形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,忽视集合的代表元素。易错点2 在解含参数集合问题时忽视空集【问题】: 已知,且,求 的取值范围。错解:-1,0)剖析:忽视的情况。正确答案:-1,2反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合就有可能忽视了,导致解题结果错误。尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。易错点3 在解含参数问题时忽视元素的互异性【问题】: 已知1, ,求实数的值。错解: 剖析:忽视元素的互异性
3、,其实当时,=1;当时, =1;均不符合题意。正确答案:反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。解题时可先求出字母参数的值,再代入验证。易错点4 命题的否定与否命题关系不明【问题】: 写出“若,则”的否命题。错解一:否命题为“若,则”剖析:概念模糊,弄错两类命题的关系。错解二:否命题为“若,则”剖析:知识不完整,的否定形式应为。正确答案:若,则反思:命题的否定是命题的非命题,也就是“保持原命题的条件不变,否定原命题的结论作为结论”所得的命题,但否命题是“否定原命题的条件作为条件,否定原命题的
4、结论作为结论”所得的命题。对此。考生可能会犯两类错误概念不清,不会对原命题的条件和结论作出否定;审题不够细心。易错点5 充分必要条件颠倒出错【问题】:已知是实数,则“且”是“且”的 A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件 错解:选B剖析:识记不好,不能真正理解充要条件概念,未能掌握判断充要条件的方法。正确答案:C反思:对于两个条件,如果,则是的充分条件,是的必要条件,如果,则是的充要条件。判断充要条件常用的方法有定义法;集合法;等价法。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时,一定要分清条件和结论,根据充要条件的定义,选择恰当的方
5、法作出准确的判断,不充分不必要常借助反例说明。易错点6 对逻辑联结词及其真值表理解不准【问题】: 命题p:若a、bR,则是的充分而不必要条件;命题q:函数y=的定义域是(,13,+,则A“”为假 B“”为真 C D 错解一:选或 剖析:对真值表记忆不准,本题中,因此“”为真,而“”为假。错法二:选 剖析:基础不牢,在判断命题真假时出错。正确答案:D反思:含逻辑联结词“或”、“且”、“非”的命题称为复合命题。在判断复合命题真假时,常常因为对概念理解不准确或真值表记不清而出现错误。为此准确理解概念、巧记真值表是解题的关键。这里介绍一种快速记忆真值表的方法:“”有真则真;“”有假则假;“”真假相反。
6、易错点7 否定全称、特称命题出错【问题】写出下列命题的否定: :对任意的正整数x, ; q:存在一个三角形,它的内角和大于; r:三角形只有一个外接圆。错解:对任意的正整数x, ;:所有的三角形的内角和小于;存在一个三角形有且只有一个外接圆。剖析:知识欠缺,基础不牢导致出错。正确答案:存在正整数x, 使;:所有的三角形的内角和都不大于;存在一个三角形至少有两个外接圆。反思:全称命题,它的否定,特称命题,它的否定。一般来说,全称命题的否定是特称命题,特称命题的否定是全称命题。切记对全称、特称命题的否定,不仅要否定结论,而且还要对量词“”进行否定。另外,对一些省略了量词的简化形式,应先将命题写成完
7、整形式,再依据法则来写出其否定形式。二、函数与导数易错点8 求函数定义域时条件考虑不充分【问题】: 求函数y=+的定义域。错解:-3,1 剖析:基础不牢,忽视分母不为零;误以为=1对任意实数成立。正确答案:反思:函数定义域是使函数有意义的自变量的取值范围,因此求定义域时就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数定义域。在求函数的定义域时应注意以下几点分式的分母不为零;偶次根式被开方式非负;对数的真数大于零;零的零次幂没有意义;函数的定义域是非空的数集。易错点9 求复合函数定义域时忽视“内层函数的值域是外层函数的定义域”【问题】已知函数求函数的
8、值域。错解:设,。剖析:知识欠缺,求函数定义域时,应考虑.正确答案:反思:在复合函数中,外层函数的定义域是内层函数的值域,求复合函数定义域类型为:若已知的定义域为,其复合函数的定义域可由不等式解出即可;若已知的定义域为 ,求的定义域,相当于xa,b时,求的值域(即 的定义域)。易错点分析10 判断函数奇偶性时忽视定义域【问题】1: 判断函数的奇偶性。错解:原函数即,为奇函数 剖析:只关注解析式化简,忽略定义域。正确答案:非奇非偶函数。【问题】2: 判断函数的奇偶性。错解:,为偶函数 剖析:不求函数定义域只看表面解析式,只能得到偶函数这一结论,导致错误。正确答案:既奇且偶函数。反思:函数具有奇偶
9、性的必要条件是其定义域关于原点对称。如果不具备这个条件,一定是非奇非偶函数。在定义域关于原点对称的前提下,如果对定义域内任意x都有,则为奇函数;如果对定义域内任意x都有,则为偶函数,如果对定义域内存在使,则不是奇函数;如果对定义域内存在使,则不是偶函数。易错点11 求复合函数单调区间时忽视定义域【问题】: 求函数的增区间。错解一:外层函数为减函数,内层函数减区间为,原函数增区间为。剖析:基础不牢,忽视定义域问题错解二:,函数定义域为,又内层函数在 为增函数,在为减函数,原函数增区间为。剖析:识记不好,对复合函数单调性法则不熟练。正确答案:反思:求复合函数单调区间一般步骤是求函数的定义域;作出内
10、层函数的图象;用“同增异减”法则写单调区间。解此类题通常会出现以下两类错误:一是忽视定义域;二是 “同增异减”法则不会或法则用错。易错点12 解“二次型函数”问题时忽视对二次项系数的讨论【问题】: 函数的图象与轴只有一个交点,求实数m的取值范围。错解:由解得 剖析:知识残缺,分类讨论意识没有,未考虑的情况。正确答案:反思:在二次型函数中,当时为二次函数,其图象为抛物线;当时为一次函数,其图象为直线。在处理此类问题时,应密切注意项的系数是否为0,若不能确定,应分类讨论,另外有关三个“二次”之间的关系的结论也是我们应关注的对象。例如:解集为解集为易错点13 用函数图象解题时作图不准【问题】: 求函
11、数的图象与直线的交点个数。错解:两个 剖析:忽视指数函数与幂函数增减速度快慢对作图的影响。正确答案:三个反思:“数形结合”是重要思想方法之一,以其准确、快速、灵活及操作性强等诸多优点颇受数学学习者的青睐。但我们在解题时应充分利用函数性质,画准图形,不能主观臆造,导致图形“失真”,从而得出错误的答案。易错点14 忽视转化的等价性【问题】1: 已知方程有且只有一个根在区间(0,1)内,求实数m的取值范围。错解:方程有且只有一个根在区间(0,1)内,函数的图象与轴在(0,1)内有且只有一个交点,解得 剖析:知识残缺,在将方程转化为函数时,应考虑到=0情况。正确答案:m2且m=9/4 【问题】2:函数
12、的图象大致是( )剖析:在转化过程中,去绝对值时出错,从而得到错误的图象。在图象变换过程中出错,搞错平移方向。正确答案:D反思:等价转化是数学的重要思想方法之一,处理得当会起到意想不到的效果,但等价转化的前提是转化的等价性,反之会出现各种离奇的错误。易错点15 分段函数问题【问题】1:.已知是R上的增函数,求a的取值范围。错解: 剖析:知识残缺,只考虑到各段函数在相应定义域内为增函数,忽视在分界点附近函数值大小关系。正确答案:【问题】2:设函数,求关于x的方程解的个数。错解:两个剖析:基础不实,分类讨论意识没有,未能将方程分两种情况来解。正确答案:三个反思:与分段函数相关的问题有作图、求值、求
13、值域、解方程、解不等式、研究单调性及讨论奇偶性等等。在解决此类问题时,要注意分段函数是一个函数而不是几个函数,如果自变量取值不能确定,要对自变量取值进行分类讨论,同时还要关注分界点附近函数值变化情况。易错点16 函数零点定理使用不当 【问题】若函数在区间-2,2上的图象是连续不断的曲线,且在(-2,2)内有一个零点,则f(-2)f(2)的值 ( ) A 大于0 B 小于0 C 等于0 D 不能确定错解:由函数零点存在定理知,f(-2)f(2)0,故选B剖析:没有正确理解函数零点的含义及存在性,若函数在(-2,2)内有一个零点,且该零点为“变号零点”,则f(-2)f(2)0,否则f(-2)f(2
14、)0.正确答案:D反思:函数零点定理是指如果函数在区间上的图象是一条连续不断的曲线,并且有,那么函数在区间内有零点。解决函数零点问题常用方法有定理法、图象法和方程法。函数零点又分为“变号零点”和“不变号零点”,函数零点定理仅适用于“变号零点”,对“不变号零点”无能为力。易错点17 混淆两类切线的概念【问题】: 若直线y = kx与曲线相切试求k的值。(提示y=kx即过原点的切线) 错解:,斜率, 剖析:知识残缺,过某点的切线并非在某点处的切线。正确答案:反思:曲线在点P处的切线”P为切点且P在曲线上,而“过点P的切线”仅能说明点P在曲线的切线上。易错点18 误解“导数为0”与“有极值”的逻辑关
15、系【问题】:函数在x=1处有极值10,求的值。错解:由解得剖析:对“导数为0”与“有极值”逻辑关系分辨不清,错把为极值的必要条件当作充要条件。正确答案:a=4,b=-11反思:在使用导数求函数极值时,很容易出现的错误是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这种错误的原因就是对导数与极值关系不清。可导函数在一点处的导函数值为0只是这个函数在此点取到极值的必要条件,充要条件是两侧异号。易错点19 对“导数值符号”与“函数单调性”关系理解不透彻【问题】:若函数在上为减函数,求实数的取值范围。错解:由在上恒成立, ,解得 剖析
16、:概念模糊,错把在某个区间上是单调增(减)函数的充分条件当成充要条件。事实上时满足题意。正确答案:反思:一个函数在某个区间上单调增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为0。切记导函数在某区间上恒大(小)于0仅为该函数在此区间上单调增(减)的充分条件。易错点20 对“导函数值正负”与“原函数图象升降”关系不清楚【问题】: 已知函数f(x)的导函数f(x)的图象如图所示,则y = f(x)的图象最有可能的是_.错解:选 剖析:概念不清,凭空乱猜,正确解法是由于,且两边值符号相反,故0和2为极值点;又因为当时,当时,所以函数在上为增函数
17、,在上为减函数。正确答案:C反思:解答此类题的关键是抓住导函数的零点与原函数的极值点关系极值点的导数值为0;导函数值的符号与原函数单调性的关系原函数看增减,导函数看正负。易错点21求解函数的反函数易漏掉确定原函数的值域即反函数的定义域。例是R上的奇函数,(1)求a的值(2)求的反函数剖析:求解已知函数的反函数时,易忽略求解反函数的定义域即原函数的值域而出错。解析:(1)利用(或)求得a=1.(2)由即,设,则由于故,而所以反思:(1)在求解函数的反函数时,一定要通过确定原函数的值域即反函数的定义域在反函数的解析式后表明(若反函数的定义域为R可省略)。(2)应用可省略求反函数的步骤,直接利用原函
18、数求解但应注意其自变量和函数值要互换。【练3】函数的反函数是( )A、 B、C、 D、 答案:B三、数列易错点22 由求时忽略对“”检验【问题】:已知数列的前n 项和,求。错解:由解得 剖析:考虑不全面,错误原因是忽略了成立的条件n2,实际上当n=1时就出现了S0,而S0是无意义的,所以使用求,只能表示第二项以后的各项,而第一项能否用这个表示,尚需检验。正确答案:反思:在数列问题中,数列的通项与其前n 项和之间关系如下,在使用这个关系式时,要牢牢记住其分段的特点。当题中给出数列的与关系时,先令求出首项,然后令求出通项,最后代入验证。解答此类题常见错误为直接令求出通项,也不对进行检验。易错点23
19、 忽视两个“中项”的区别【问题】: 是成等比数列的 ( )A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分有不必要条件错解: C 剖析:思维不缜密,没有注意到当 时,可能为0。正确答案:B反思:若成等比数列,则为和的等比中项。由定义可知只有同号的两数才有等比中项, “”仅是“为和的等比中项”的必要不充分条件,在解题时务必要注意此点。易错点24在数列求和中对求一等差数列与一等比数列的积构成的数列的前n项和不会采用错项相减法或解答结果不到位。【问题】已知数列是等差数列,且(1)求数列的通项公式(2)令求数列前项和的公式。剖析:本题根据条件确定数列的通项公式再由数列的通项公式分析可
20、知数列是一个等差数列和一个等比数列构成的“差比数列”,可用错项相减的方法求和。解析:(1)易求得(2)由(1)得令()则()用()减去()(注意错过一位再相减)得当当时综上可得:当当时反思:一般情况下对于数列有其中数列和分别为等差数列和等比数列,则其前n项和可通过在原数列的每一项的基础上都乘上等比数列的公比再错过一项相减的方法来求解,实际上课本上等比数列的求和公式就是这种情况的特例。【练】已知当时,求数列的前n项和答案:时当时.易错点25:不能根据数列的通项的特点寻找相应的求和方法,在应用裂项求和方法时对裂项后抵消项的规律不清,导致多项或少项。例、求剖析:本题解答时一方面若不从通项入手分析各项
21、的特点就很难找到解题突破口,其次在裂项抵消中间项的过程中,对消去哪些项剩余哪些项规律不清而导致解题失误。解:由等差数列的前项和公式得,取,就分别得到,反思:“裂项法”有两个特点,一是每个分式的分子相同;二是每项的分母都是两个数(也可三个或更多)相乘,且这两个数的第一个数是前一项的第二个数,如果不具备这些特点,就要进行转化。同是要明确消项的规律一般情况下剩余项是前后对称的。常见的变形题除本题外,还有其它形式,例如:求,方法还是抓通项,即,问题会很容易解决。另外还有一些类似“裂项法”的题目,如:,求其前项和,可通过分母有理化的方法解决。数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 备考 高中数学 易错点 梳理 详细 解析
限制150内