不等式证明的若干方法毕业论文.doc
《不等式证明的若干方法毕业论文.doc》由会员分享,可在线阅读,更多相关《不等式证明的若干方法毕业论文.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 不等式证明的若干方法摘 要无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等式的证明则是不等式知识的重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能
2、力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯.关键词 不等式;比较法;数学归纳法;函数A Lot of Methods about Inequality ProofAbstractIn elementary mathematics and higher mathematics, inequalities are very important elements. Inequality is an important component in the inequality proof. In this paper, I summarized some mathematical ine
3、quality proof methods. Inequality in elementary mathematical proof commonly use in comparative law, for commercial, analysis, synthesis, mathematical induction, the reduce- tion to absurdity, discriminant, function, Geometry, and so on. Inequality in higher mathematics proof often use the intermedia
4、te value theorem, Taylor formula, the Lagranga function and some famous inequality, such as : mean inequality, Kensen inequality, Johnson in- equality, Helder inequality, and so on. Inequality proof methods get more efficient and help us further explore and study the inequality proof. Through the st
5、udy of these proof methods, we can solve some practical problems, develop logical reasoning ability and demonstrated the ability to abstract thinking and grow hard thinking and good at thinking of the good study habit.Key words inequality; comparative law; mathematical induction; function 目 录摘要Abstr
6、act前言11 常用方法111比较法(作差法)1 12作商法 1 13分析法(逆推法)1 14综合法2 15反证法2 16迭合法2 17放缩法3 18数学归纳法3 19换元法3 110三角代换法4 111判别式法4112标准化法4113等式法5 114分解法6 115构造法6116排序法6117借助几何法72 利用函数证明不等式8 21函数极值法8 22单调函数法823中值定理法8 24利用拉格朗日函数93 利用著名不等式1231利用均值不等式12 32利用柯西不等式13 33利用赫尔德不等式13 34利用詹森不等式13参考文献15致谢16 16河南师范大学本科毕业论文(设计)(小五,宋体,居
7、中,论文、设计二选一)前 言在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的认识要比方程要迟的多.直到17世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论的一个重要组成部分.在研究数学的不等式过程中,有许多的内容都十分的有用,如:不等式的性质、不等式的证明方法和不等式的解法. 在本文中,我们就不一一说明了,而主要的介绍一些证明不等式的常用方法、利用函数证明不等式的方法和利用一些著名不等式证明不等式的方法.希望通过这些方法的学习,我们可以很好的认识数学的
8、一些特点.从而开拓一下我们的数学视野,深化一下我们对不等式证明方法的认识,以便于可以站在更高的角度来研究数学不等式.1 常用方法1.1比较法(作差法)1在比较两个实数和的大小时,可借助的符号来判断.步骤一般为:作差变形判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:,求证:.证明 ,故得 .1.2作商法在证题时,一般在,均为正数时,借助或来判断其大小,步骤一般为:作商变形判断(大于1或小于1).例2 设,求证:.证明 因为 ,所以 ,.而 ,故 .1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明
9、显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:.证明 要证,即证,即,.由此逆推即得 .1.4综合法2证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法.例4 已知:,同号,求证:.证明 因为,同号,所以 ,则 即 .1.5反证法3先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的.例5 已知,是大于1的整数,求证:.证明 假设 ,则 ,即 ,故 ,这与已知矛盾,所以.1.6迭合法4把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不
10、等式相加或相乘的性质,使原不等式获证. 例6 已知:,求证: .证明 因为,所以 ,.由柯西不等式所以原不等式获证.1.7放缩法5在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例7 求证: .证明 令则所以 .1.8数学归纳法6对于含有的不等式,当取第一个值时不等式成立,如果使不等式在时成立的假设下,还能证明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式证明的若干方法 毕业论文 不等式 证明 若干 方法
限制150内