关于线性变换的可对角化问题毕业论文.doc
《关于线性变换的可对角化问题毕业论文.doc》由会员分享,可在线阅读,更多相关《关于线性变换的可对角化问题毕业论文.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 本科毕业论文(设计) 题 目: 关于线性变换的可对角化问题 学 生: 学号: 学 院: 专业: 入学时间: 年 月 日 指导教师: 职称: 完成日期: 年 月 日诚 信 承 诺我谨在此承诺:本人所写的毕业论文关于线性变换的可对角化问题均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年 月 日 关于线性变换的可对角化问题摘 要:线性变换可对角化问题是高等代数的重要内容.我们可以通过探讨矩阵的可对角化问题来研究线性变换的可对角化问题.本文先给出可对角化的概念;再探讨线性变换可对角化的判定以及其在高等代数中应用,并简略介绍几种特
2、殊的可对角化问题.关键词:线性变换可对角化;特征值;特征向量;最小多项式;矩阵可对角化;实对称矩阵Diagonolization of linear transformationAbstract: The diagonolization of linear transformation, which can be studied by the diagonalization of matrix, is important in higher algebra. In this paper, we first introduce the conception of diagonolization,
3、 then discuss the decision of diagonolization of linear transformation and its applications in the advanced algebra, moreover, we introduce briefly several kinds of special diagonolization problems. Key words: Diagonalization of linear transformation; Eigenvalue; Eigenvector; Minimal polynomial ; Ma
4、trix diagonalization; Real symmetric matrices 目 录1 引言.12 可对角化的概念.13 判定方法.14 两个矩阵同时合同对角化.45 几类特别的可对角化矩阵.66 应用.66.1 矩阵相似的判断.66.2 方阵高次幂.76.3 化实对称矩阵为对角形矩阵.76.4 求特征值.86.5 经典例题.87 小结.9参考文献.101 引言我们要想研究可对角化问题,可以从它在某组基下的矩阵下手.那我们该如何研究这个问题?它的概念是什么?对角化有哪些判断方法?它们应该如何应用?下面将综合介绍一下以上问题.2 可对角化的概念定义8 设是维线性空间的一个线性变换,
5、 为在某一组基下的矩阵且与矩阵相似,其中矩阵是对角形矩阵,则称可对角化,也称线性变换可对角化.我们把叫做的相似对角形矩阵.3 判定方法3.1 定理18 设维线性空间内有一个线性变换,且为它在某一组基下的矩阵,要是为对角形矩阵,那么可对角化.例1设在三维线性空间内有一个线性变换,是在基下的矩阵,由于为对角形矩阵,可知可对角化.3.2 定理21 设是维线性空间内的一个线性变换,且有个线性无关的特征向量,则可对角化.证明 “必要性” 假设可对角化,令.即 ,;特征值为,则 是的特征向量,由已学知识可知是不相关的.“充分性” 设有个不相关的向量,并且它们都是的特征向量,设 ,其中; 将作为线性空间中的
6、一组基,则满足: .即在基下的矩阵为对角形矩阵,从而可对角化.例22 是在基下的矩阵,试利用定理2判断是否可对角化.解 由于,的特征值为:.对于,由知基础解系是:和.由已学知识可知它们是线性无关的,故它们对应的特征向量为:, .对于,由知基础解系是:.由已学知识可知它是线性无关的,故它对应的特征向量为:.由以上可知包含三个特征向量,并且它们是线性无关的.其个数刚好等于空间维数,由定理1知可对角化.3.2推论12 设是维线性空间的一个线性变换,若在数域中的特征多项式包含个互不相等的根,那么可对角化.例3 设二维线性空间内有一个线性变换,是它在基下的矩阵,试利用推论1判断是否可对角化.解 由知的特
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关于线性变换的可对角化问题 毕业论文 关于 线性变换 角化 问题
限制150内