人教版七年级数学上册期末复习知识点总结.docx
《人教版七年级数学上册期末复习知识点总结.docx》由会员分享,可在线阅读,更多相关《人教版七年级数学上册期末复习知识点总结.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级上册 第一章 有理数 21 1.1 正数与负数 在以前学过的0以外的数前面加上负号“”的数叫负数. 与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”).【说明】1.有理数由“符号”和“数值”两部分组成.(符号问题是我们在今后的学习中经常忘记的问题.) 2.正数前面的符号可以省略,负数前面的符号不能省略. 3.正数大于0,负数小于0,正数大于负数. 4. 0既不是正数,也不是负数. 5.正、负数通常表示相反意义的量,这些量包括:向东与向西;收入与支出;盈利与亏损;(温度)零上与零下;(水位)上升与下降;高于与低于(水平面);(出口)增长与减少
2、例如:向东走2米,记作:+2米;那么向西走3米,记作3米.6.用正负数表示加工允许误差 例如:图纸上注明一个零件的直径是mm,表示零件的直径标准是30mm,但是,在生产的过程中,由于生产工艺存在的误差,因此直径可以比30mm大0.2mm,也可以比30mm小0.3mm.即零件的直径在29.7mm30.2mm之间都合格.但在这个范围以外的就不合格了.【例1】下列说法不正确的是()A0小于所有正数B0大于所有负数C0既不是正数也不是负数D0没有绝对值1.2 有理数1.2.1 有理数有理数的概念:整数和分数统称有理数. 【说明】1.整数分为正整数、0、负整数. 2.分数分为正分数、负分数.3.无限循环
3、小数是有理数,它可以化成分数.如0.333= 4.无限不循环小数是无理数,如:.5.没有最大的有理数,也没有最小的有理数. 6.最大的负整数是-1,最小的正整数是1。7.几个常见的概念:非负数:指正数和零; 非正数:负数和零; 【例2】在22,(2)2,(2),|2|中,负数的个数是()A1个B2个C3个D4个1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴;【说明】1.数轴有三要素:原点、正方向、单位长度。2.数轴的性质: 数轴上的点与有理数一一对应关系;正数都大于0,负数都小于0,正数大于负数;数轴上的点表示的数从左往右依次增大,从右往左依次减小。数轴上到原点的距离相等的点有2个
4、,一个在原点左边,一个在原点右边,他们互为相反数.4.利用数轴比较数的大小:数轴上的点表示的数,右边的总比左边大.5.数轴上点的移动用数形结合的思维方法,通过画图分析,解决问题1.23 相反数只有符号不同的两个数叫做互为相反数。或者说:如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数;【说明】1.正数的相反数是负数;负数的相反数是正数;0的相反数是0.2.相反数的代数意义:互为相反数的两个数相加,和为0.3.相反数的几何意义:互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.4.相反数的读法:-(-2)读作负2的相反数.从数轴上看-2的相反数是2,因此-(-2)=2.5
5、.一般地,数a的相反数是-a.【例3】若两个数的和为正数,则这两个数()A至少有一个为正数B只有一个是正数C有一个必为0D都是正数1.2.4 绝对值在数轴上表示数a的点到原点的距离叫做数a的绝对值.【说明】1.几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.2.代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:即: 如果a0,那么=a;如果a0,那么=-a;如果a=0,那么=0.3.绝对值等于a(a0)的数有两个,一个在原点左边,一个在原点右边,它们互为相反数.例如:|a|=2,则().4.|a|是重要的非负数,即|a|0; 5.
6、理解: ; ;6.两个负数比较大小,绝对值大的反而小.7.理解几个特殊的绝对值所表示的意义:【例4】 |x-2|+|y-3| = 0, 则xx+yy = .【例5】 1的相反数是,倒数是,绝对值是1.3 有理数的加减法1.3.1 有理数的加法加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。加法的交换律:两个数相加,交换加数的位置,和不变.用字母表示:.加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 用字母表示:( a+b )
7、+c = a + (b +c).1.3.2有理数的减法几个正数或负数的和称为代数和加减混合运算可以统一为加法运算,写成代数和的形式.例如:.可以读作:a加b减c,也可以读作:a,b,-c的代数和.有理数加减混合运算:先把减法变成加法,再按有理数加法法则进行运算.1.4 有理数的乘除法:先确定符号1.4.1 有理数的乘法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.倒数的定义:乘积是1的两个有理数互为倒数.若ab=1,则a和b互为倒数.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.乘法运算律:乘法交换律:两个数相乘,交换因数的
8、位置,积相等.用字母表示为:ab=ba.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.用字母表示为:(ab)c=a(bc).乘法交换律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a(b+c) =ab+ac.【说明】1.常见错误仍是符号问题,做题时,先定符号,再定值. 2.求一个数的倒数的方法:求一个分数的倒数,就是把这个分数的分子、分母颠倒位置. 求一个整数的倒数:可以把整数看成是分母为1的分数,再把分子、分母颠倒位置. 带分数要先画成假分数,再将分子、分母颠倒位置.1.4.2 有理数的除法除法法则:除以一个数不等于0的数,等于
9、乘这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.【说明】1.除法法则可以把除法转化为乘法.【例5】计算:(+)(36)1.5 有理数的乘方1.5.1 乘方求几个相同因数a的运算叫做乘方,记做“”.其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,表示的意义是n个a相乘的积,不是n乘以a,乘方的结果叫做幂.【说明】1.负数的偶数次方是正数,负数的奇数次方是负数.用字母表示:若a0,则a2n0;a2n-10(n是正整数).2.正数的任何次方都是正数,0的任何正整数次幂都是0.用字母表示:若a0,则an0;0n=0(n是正整数).3.互
10、为相反数的两个数,偶次幂相等,奇次幂仍互为相反数. 用字母表示为:a2n=(-a)2n(n是正整数);a2n-1=-(-a)2n-1(n是正整数).有理数的混合运算的运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行.【例6】计算(1)3(17)33(3)21.5.2 科学记数法把一个大于10的数表示成a10n次方的形式(其中a是整数数位只有一位的数,n是正整数),使用的就是科学记数法. 【说明】1.a的取值范围是: 1a10. 2.n比整数位数小1. 3.采用移动小数点儿的方法来确定a和n的值比较好,具体方法是
11、:将小数点儿向左移动,小数点的位置移到它的前面只有1位整数为止,小数点儿移动了几位,n就等于几.将小数点儿后面的0去掉,剩下的部分就等于a. 【例7】12050000,这个数据用科学记数法是 1.5.3 近似数近似数:与实际数据接近的数.从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字.【说明】1.测量工具(如千分尺、螺旋测微器等)测量出来的数值都是近似数. 2.北京时间是确数. 3.合格率、市场占有率等是近似数.4.考查近似数与有效数字同时考是一个难点.例如:159620000保留三位有效数字是:1.60108. 1.2104精确到千位.【例8】下列说法正确的是()
12、A0.720精确到百分位B3.6万精确到个位C5.078精确到千分位D3000精确到万位第二章 整式2.1整式单项式:由数字或字母的乘积表示的式子叫做单项式.单项式的系数:单项式中的数字因数叫做单项式的系数.单项式的次数:单项式中所以字母的指数之和叫做单项式的次数.例如:单项式x2y3次数是(x的指数)2+(y的指数)3的和,次数为5.多项式:几个单项式的和叫做多项式.其中的每一个单项式叫做项,不含字母的项叫做常数项.多项式的次数:多项式中次数最高的项的次数叫做多项式的次数. 2.把一个多项式的各项的位置按照其中某一字母的指数大小顺序由高到低进行排列,就叫做这个多项式按这个字母的降幂排列.例如
13、:5x2+3x-2x3-1按x的降幂排列,可以写成:-2x3+5x2+3x-1.按照其中某一字母的指数大小顺序由低到高进行排列,就叫做这个多项式按这个字母的升降幂排列.若x2+3x-2x3-1按x的升降幂排列,则可以写成:-1+3x+5x2-2x3.【例8】-3x2y 的系数是_。-2x2y4 的次数是_。 3x-1 + 6x2 + 4x3 是_次_项式,其中常数项是_,按 x 的降幂排 列是_。 2.2 整式的加减同类项:所含字母相同,相同字母的指数也相同的项叫做同类项.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 上册 期末 复习 知识点 总结
限制150内