人教版七年级数学上下册1-10章知识点总结.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版七年级数学上下册1-10章知识点总结.docx》由会员分享,可在线阅读,更多相关《人教版七年级数学上下册1-10章知识点总结.docx(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初级中学数学一轮复习知识点回顾与总结七年级(第一章-第十章)学校: 姓名: 学号: 人教版 数学 七年级(上) 第一章 有理数知识点1.1正数和负数知识点1 正数和负数的概念(1) 像3、1.5、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。(2) 像3、1.5、584等在正数前面加“”(读作负)号的数,叫做负数。负数比0小。(3) 零即不是正数也不是负数,零是正数和负数的分界。注意:(1)为了强调,正数前面有时也可以加上“”(读作正)号,例如:3、1.5、也可以写作3、1.5、。(2)对于正数和负数的概念,不能简单理解为:带“”号的数是正数,带“”号的数是负数。
2、例如:a一定是负数吗?答案是不一定。因为字母a可以表示任意的数,若a表示的是正数,则a是负数;若a表示的是0,则a仍是0;当a表示负数时,a就不是负数了(此时a是正数)。知识点2 用正数、负数表示具有相同意义的量正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习
3、惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。1.2有理数知识点1 有理数的有关概念(1) 有理数:整数和分数统称为有理数。注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。但是本讲中的分数不包括分母是1的分数。 (2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。 (3)“0”即不是正数,也不是负数,但“0”是整数。(2) 整数包括正整数、零、负整数。例如:1、2、3、0、1、2、3等等。(3) 分数包括正分数和负分数,例如:、0.6、0.6等等。知
4、识点2 有理数的分类(1) 按整数、分数的关系分类:(2) 按正数、负数与0的关系分类:注 通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。如果用字母表示数,则a0表明a是正数;a0表明a是负数;a0表明a是非负数;a0表明a是非正数。知识点3 数轴数轴是理解有理数概念与运算的重要工具,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。正如华罗庚教授诗云: 数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数是难入微。数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!数与形的第一次联姻
5、数轴,使数与直线上的点之间建立了对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。1) 数轴的定义规定了原点、正方向和单位长度的直线叫做数轴数轴的定义包含三层含义:一,数轴是一条直线,可以向两端无限延伸;二,数轴有三要素原点、正方向、单位长度,三者缺一不可;三,原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。65432101234562) 数轴的画法(1)画一条直线(一般画成水平的直线)。(2)在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。(3)确定正方向(一般规定向右为正),用箭头表示出来。(4)选取适当的长度作为单
6、位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3;从原点向左,每隔一个单位长度取一点,依次表示为1,2,3注 (1)原点的位置、单位长度的大小可根据实际情况适当选取; (2)确定单位长度时,根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点,从原点向右,依次表示为2,4,6,;从原点向左,依次表示为2,4,6,;3)数轴上的点与有理数的关系所有的有理数都可以用数轴上的点表示。正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示。4) 利用数轴比较有理数的大小在数轴上表示的两个数,右边的数总比左边的数大。正数都大于0;负数都小于0;正数大于一切负数
7、。知识点4 相反数1) 相反数的定义(1)相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数。如下图,4与4互为相反数,与互为相反数。(2)相反数的代数定义:只有符号不同的两个数(除了符号不同以外完全相同),我们说其中一个是另一个的相反数。2)相反数的性质:(1)任何一个数都有相反数,而且只有一个。正数的相反数是负数,负数的相反数是正数,0的相反数是0。0是唯一一个相反数等于本身的数。反之,如果a=-a,那么a一定是0.3) 相反数的特征:若a与b互为相反数,则a+b=0(或a=-b)若a+b=0(或a=-b),则a与b互为相反数。4)求一个数的相反数的方法
8、:加个负号即可。5)多重符号的化简(1)在一个数的前面添上一个“”号,仍然与原数相同,如55,(5)5。(2)在一个数的前面添上一个“”号,就成为原数的相反数。如(3)就是3的相反数,因此,(3)3。知识点5 绝对值的概念(1)绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“”(2)绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。即知识点6 有理数大小的比较正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小。利用数轴,在数轴右边的数永远大于左边的数1.3 有理数的加减法1.3.1有理数的加法
9、知识点1 有理数的加法把两个有理数合成一个有理数的运算叫做有理数的加法。相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。知识点2 有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。(3)一个数同0相加,仍得这个数。知识点3 有理数加法的运算定律(1)加法交换律:。(2)加法结合律:。1.3.2有理数的减法知识点1 有理数减
10、法法则减去一个数,等于加上这个数的相反数,即知识点2 有理数的加减混合运算1) 有理数加减法统一成加法的意义对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。这样一来,就将原来的混合运算统一为加法运算。统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。2)有理数加减混合运算的方法一、运用减法法则将有理数混合运算中的减法转化为加法。二、运用加法法则、加法交换律、加法结合律简便运算。1.4有理数的乘除法1.4.1有理数的乘法知识点1 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。知识点2 倒数的概念乘积是
11、1的两个数互为倒数。由于 ,所以当a是不为0的有理数时,a的倒数是。若a、b互为倒数,则ab1。知识点3有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。(2)几个数相乘,只要有一个因数为0,积就为0。知识点4 有理数乘法的运算定律(1)乘法交换律:。(2)乘法结合律:。(3)分配律:。1.4.2有理数的除法知识点1 有理数除法法则一、除以一个数等于乘以这个数的倒数。即。二、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。知识点2 有理数的乘除混合运算:除转乘,确定符号。知识点3
12、有理数的四则混合运算先乘除,后加减,如果有括号,就先算括号里面的。同级运算中,要按照从左到右的顺序。1.5有理数的乘方知识点1 有理数乘方的意义求n个相同因数的积的运算,叫乘方。例如aaaaaa,记作“”。乘方的结果叫做幂。在中,叫做底数,n叫做指数, 读作的n次方,。知识点2 有理数乘方运算的性质正数的任何次幂都是正数 负数的奇次幂是负数,负数的偶次幂是正数.0的任何次幂都是0.知识点3 有理数混合运算的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。知识点4 科学计数法把一个大于10的数记成“”的形式,其中a是整数数位中只有一位的数,这种记数法叫做科学记数法。如42
13、000 0004.2。知识点5 研究近似数的意义在生产实践和实际生活中,不仅存在着大量的准确数,同时也存在着大量的近似数。近似数就是与实际接近的数。出现近似数的原因有两点:一是有时候不能得到完全准确的数,如太阳的半径大约是696 000千米;二是有时也没有必要弄得完全准确,如买10千克大米,有时可能多一点,有时也可能少一点。知识点2 精确度一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。知识点3 有效数字四舍五入后的近似数,从左边第一个不为0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。方法技巧1:在只含有乘、除法的算式中,可以由“负”号的个数确定结果的符号。“负”
14、号有奇数个时,结果为负;“负”号有偶数个时,结果为正。方法技巧2:分数、小数乘除混合运算,通常把小数化为分数,带分数化为假分数。当把乘除都化成乘积的形式时,应先确定积和符号。含有多重括号,去括号的一般方法是由内向外,即依次去掉小、中、大括号,也可以由外到内。在进行混合运算时,要注意两点:一是运算顺序,二是运算符号。方法技巧3:灵活运用有理数的运算法则、运算律,适当地添加或去括号改变运算顺序常可达到简化运算的效果。凑整、分组、拆项、相消、分解相约、整体处理等是有理数运算常用的方法与技巧。人教版 数学 七年级(上) 第二章 整式的加减知识点1.单项式:数字与字母的积或者字母与字母的积。一个单独的数
15、字或者具体的数字也是单项式。注意:数字与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。2.单项式的系数:单项式中的数字因数。如果在一个单项式中没有出现具体的数字,则它的系数是1.例如:xy它的系数是1,-n它的系数是-1.常数项(具体的数字)的系数就是它本身,例如:3的系数就是3,的系数就是。是一个常数(具体的数字),不是字母。3.单项式的次数:单项式中所以字母指数的和。例如:的次数是2次,的次数是5次,的次数是3次。常数(具体的数字)的次数是0次,例如:3的次数就是0,的次数是0。4.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。例如:
16、多项式是由单项式、相加组成,所以、就是多项式的项,就是常数项。5.多项式的次数:多项式中次数最高项的次数。要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。其中次数最高的项叫最高次项,例如:多项式,的次数是3次,的次数是1次,的次数是1次,的次数是0次,所以的次数最高,那么就是最高次项,则这个多项式的次数就是3次。6.整式:多项式和单项式统称为整式。如果一个式子的分母中出现了字母(除外),那么它就不是整式(即它不是单项式,也不是多项式)。7.同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如与是同类项,因为这两
17、个项中都含有字母m、n,并且字母m的指数都是3,字母n的指数都是2,所以他们是同类项。同类项与系数和字母的顺序无关,只与字母和字母的指数有关。注意:几个常熟项也是同类项,如3与5,-7与100等等。8.合并同类项的方法:把每个同类项的系数相加,把字母以及字母的指数写在系数的后面,例如:=(3+5)=8。注意:是同类项才能合并,否则不能进行合并。9.去括号的方法:1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;2. 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。注意,+(x-3),可以看作1与(x-3),去括号得:+(x-3)=x-3-(x-3)可以
18、看作-1与(x-3),去括号得: -(x-3)=-x+3.如果括号外的系数不是1和-1时,应先把符号放在括号外,用数字与括号内的每一项相乘,乘完之后再按照去括号的方法来去括号。例如:+3(2m-5n)=+(32m-35n)=+(6m-15n)=6m-15n -3(2m-5n)=-(32m-35n)=-(6m-15n)=-6m+15n10整式加减的运算法则:几个整式项加减,如果有括号就先去括号,然后再合并同类项。11.船在顺水、逆水中航行或者飞机在顺风、逆风中飞行的问题:船在顺水中航行的速度=船在静水中航行的速度+水流速度船在顺水中航行的速度=船在静水中航行的速度-水流速度飞机在顺风中飞行的速度
19、=飞机在无风时飞行的速度+风的速度飞机在顺风中飞行的速度=飞机在无风时飞行的速度-风的速度注意:在求多项式的值时,应先将多项式进行化简,然后再将题中相应字母的值带入化简之后的式子进行计算。人教版 数学 七年级(上) 第三章 一元一次方程知识点1等式:用“=”号连接而成的式子叫等式.2等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.4方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5移项:改变符号后,把方程的项从一边移到
20、另一边叫移项.移项的依据是等式性质1.6一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).8一元一次方程解法的一般步骤: 化简方程-分数基本性质 去 分母-同乘(不漏乘)最简公分母 去 括号-注意符号变化移 项-变号合并同类项-合并后注意符号系数化为1-未知数细数是几就除以几10列一元一次方程解应用题: (1)读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-”,利用这
21、些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11解实际应用题:知识点1:市场经济、打折销售问题(1)商品利润商品售价商品成本价 (2)商品利润率100%(3)商品销售额商品销售价商品销售量(4)商品的销售利润(销售价成本价)销售量知能点2: 方案选择问题知能点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 上下册 10 知识点 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内