函数项级数一致收敛的比较判别法与对数判别法毕业论文.doc
《函数项级数一致收敛的比较判别法与对数判别法毕业论文.doc》由会员分享,可在线阅读,更多相关《函数项级数一致收敛的比较判别法与对数判别法毕业论文.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 函数项级数一致收敛的比较判别法与对数判别法摘 要:函数项级数在级数理论中占有重要地位,研究函数项级数的一致收敛性至关重要。本文将通过已有结论发现判断函数项级数一致收敛性的一些新的判别法。(1) 比较判别法:对已有结论做进一步的推广,得到比较判别法。再结合确界知识得出比较判别法的极限形式。另外,将函数项级数特殊化得出M判别法。在此基础上,将对比的级数换成具有相同的敛散性的级数,将M判别法作进一步的推广。(2) 对数判别法:当比较判别法中的两级数均为正项级数时,不等式的两边同时取对数可得到对数判别法。而且,当级数取特殊的级数时,可将对数判别法特殊化,得到新的判别法。关键词:函数项级数 ;一致收敛
2、;比较判别法 ;对数判别法 The Comparison criterion and logarithm criterion of the uniform convergence of Functions Series Abstract: Functional Series plays an important role in the series theory, its very important to study the uniform convergence of Functions Series. This article will found some new criterion
3、about the uniform convergence of Functions Series through the some results that already founded Series. (1) Comparison criterion : Made the results that already know more further promotion in order to get new criterion. Combined with knowledge obtained supremum,get the limit form of Comparison Tests
4、. In addition, made Functional Series special to get M criterion. On this basis, comparison of the series will be replaced with series of the same convergence and divergence , let the M criterion gets further promotion. (2) Logarithm criterion: When the two series in the comparison criterion are bot
5、h in positive terms, made a logarithm transform on the both sides of the inequality on the same time, then we get logarithm criterion. Moreover, when the series be replaced by a special series, the method can determine logarithm criterion specialization ,and will get a new identification method. Key
6、words: Functions Series;Uniform convergence;Comparison criterion;Logarithm criterion引言目前关于数项级数敛散性的研究很多,也已经得到了很多有价值的成果。文献1不仅证明了关于正项级数敛散性的比较判别法、比式判别法、根式判别法、积分判别法及拉贝判别法,而且探讨了关于判断一般项级数敛散性的柯西收敛准则、莱布尼茨判别法、阿贝尔判别法、狄利克雷判别法。文献2和文献3利用数列极限和函数极限的关系,把求函数项级数敛散性的问题转化为求函数极限的问题;文献4和文献5对正项级数的比式判别法进行了推广,使比式的分子分母不仅仅局限于相
7、邻的两项;文献6在文献4和文献5的基础上,进一步对比式判别法进行推广得到广义比式判别法,使比式判别法的应用更加广泛;文献7利用比较判别法,对根式判别法和阿贝尔判别法作了一定的推广。函数项级数作为数项级数的推广同数项级数有紧密的联系。函数项级数的一致收敛性同数项级数的敛散性密切相关。判断一个函数项级数的一致收敛性对于研究函数项级数具有至关重要的作用。但是目前关于函数项级数的一致收敛性的探讨还很不成熟,需要对此进行更进一步的研究。在文献1中已有一些判别函数项级数一致收敛性的判别法,如:柯西准则,阿贝尔判别法,狄利克雷判别法等。文献8利用数列对用定义判断函数项级数一致收敛性进行了推广。文献9结合数项
8、级数的比式判别法与根式判别法,得到了函数项级数一致收敛的比式与根式判别法。文献10在文献9的基础上,结合确界的有关知识,进一步对根式判别法做了推广,使根式判别法的应用范围更为广泛。本文将以这些已有结论作为基础,对比数项级数敛散性的相关结论,对函数项级数的一致收敛性进行进一步的探讨,以便找到更为简洁的判别法。首先,在文献1中有一道习题:若在数集D上对任何正整数n, ,证明当在D上一致收敛时,级数在D上也一致收敛。对该题作一推广,当不一致收敛时也不一致收敛。由此,得到判别函数项级数一致收敛性的比较判别法。另外,类比文献10,将比较判别法与确界知识结合起来,得到比较判别法的极限形式。又由于数项级数是
9、函数项级数的特例,当一数项级数收敛时,其作为函数项级数在定义域上一致收敛。因此,当函数项级数是一个数项级数时,由函数项级数的比较判别法可得到另一判别法:M判别法。其次,由于已知当时,收敛,当时,发散。故可将作为一特殊的数项级数,利用M判别法得出函数项级数一致收敛性的另一新的判别法。又由于,具有相同的敛散性,因此,在推论中可将分别替换为和。与此同时,可对比比较判别法的极限形式,推导出这些推论的极限形式,使这些结论更为一般。最后,若比较判别法中的两级数均为正项级数时,对不等式两边同时取对数,可得到一种新的判别法:对数判别法。另外,可将级数作为特殊的函数项级数,对比对数判别法,推导出推论2.1,进而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数项级数一致收敛的比较判别法与对数判别法 毕业论文 函数 级数 一致 收敛 比较 判别 对数
限制150内