高考数学压轴题专项练习(最新版).doc
《高考数学压轴题专项练习(最新版).doc》由会员分享,可在线阅读,更多相关《高考数学压轴题专项练习(最新版).doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考数学压轴题专项练习(最新版)2018年高考数学压轴题小题高考数学压轴题型专项练习(最新版)一选择题(共6小题)1(新课标)已知f(x)是定义域为(,+)的奇函数,满足f(1x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=()A50B0C2D502(新课标)已知F1,F2是椭圆C:=1(ab0)的左、右焦点,A是C的左顶点,点P在过A
2、且斜率为的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离心率为()ABCD3(上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()ABCD04(浙江)已知,是平面向量,是单位向量若非零向量与的夹角为,向量满足4+3=0,则|的最小值是()A1B+1C2D25(浙江)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点)设SE与BC所成的角为1,SE与平面ABCD所成的角为2,二面角SABC的平面角为3,则()A123B321C132D2316(浙江)函数y
3、=2|x|sin2x的图象可能是()ABCD7(江苏)在平面直角坐标系xOy中,若双曲线=1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 8(江苏)若函数f(x)=2x3ax2+1(aR)在(0,+)内有且只有一个零点,则f(x)在1,1上的最大值与最小值的和为 9(天津)已知a0,函数f(x)=若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是 10(北京)已知椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 11(上海)已知实数x1
4、、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为 12(上海)已知常数a0,函数f(x)=的图象经过点P(p,),Q(q,)若2p+q=36pq,则a= 13(浙江)已知R,函数f(x)=,当=2时,不等式f(x)0的解集是 若函数f(x)恰有2个零点,则的取值范围是 14(浙江)已知点P(0,1),椭圆+y2=m(m1)上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大15(浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数(用数字作答)三解答题(共2小题)16(上海)设常
5、数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解17(浙江)已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(,)()求sin(+)的值;()若角满足sin(+)=,求cos的值高考数学压轴题小题参考答案与试题解析一选择题(共6小题)1(新课标)已知f(x)是定义域为(,+)的奇函数,满足f(1x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=()A50B0C2D50【解答】解:f(x)是奇函数,且f(1x)=f(1+x),f(1x)=f(1+x)=f(x1
6、),f(0)=0,则f(x+2)=f(x),则f(x+4)=f(x+2)=f(x),即函数f(x)是周期为4的周期函数,f(1)=2,f(2)=f(0)=0,f(3)=f(12)=f(1)=f(1)=2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+02+0=0,则f(1)+f(2)+f(3)+f(50)=12f(1)+f(2)+f(3)+f(4)+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C2(新课标)已知F1,F2是椭圆C:=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离
7、心率为()ABCD【解答】解:由题意可知:A(a,0),F1(c,0),F2(c,0),直线AP的方程为:y=(x+a),由F1F2P=120,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,题意的离心率e=故选:D3(上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()ABCD0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合我们可以通过代入和赋值的方法当f(1)=,0时,此时得到的圆心角为
8、,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B故选:B4(浙江)已知,是平面向量,是单位向量若非零向量与的夹角为,向量满足4+3=0,则|的最小值是()A1B+1C2D2【解答】解:由4+3=0,得,()(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x0)上不妨以y=为例,则|的最小值是(2,0)到直线的距离减1即故选:A5(浙江)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是
9、线段AB上的点(不含端点)设SE与BC所成的角为1,SE与平面ABCD所成的角为2,二面角SABC的平面角为3,则()A123B321C132D231【解答】解:由题意可知S在底面ABCD的射影为正方形ABCD的中心过E作EFBC,交CD于F,过底面ABCD的中心O作ONEF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则1=SEN,2=SEO,3=SMO显然,1,2,3均为锐角tan1=,tan3=,SNSO,13,又sin3=,sin2=,SESM,32故选:D6(浙江)函数y=2|x|sin2x的图象可能是()ABCD【解答】解:根据函数的解析式y=2|x|si
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 压轴 专项 练习 最新版
限制150内