《变频调速恒压供水毕业设计论文.doc》由会员分享,可在线阅读,更多相关《变频调速恒压供水毕业设计论文.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、山西职业技术学院毕业设计(论文) 29毕 业 设 计(论文)题目: 变频调速恒压供水 系部: 电气工程与自动化 专业: 电气自动化 班级: 电气A1001 姓名: 指导教师: 山西职业技术学院目 录摘要21 绪论31.1 课题的提出31.2本课题的主要研究内容42 系统的理论分析及控制方案确定42.1 变频恒压供水系统的理论分析42.1.1 电动机的调速原理42.1.2 变频恒压供水系统的节能原理52.2 变频恒压供水系统的组成及原理图72.2.1变频恒压供水系统的组成72.2.2变频恒压供水系统控制流程92.2.3 水泵切换条件分析103软硬件的调试113.1组态王6.5的简介113.2 组
2、态王的基本操作123.2.1 制作一个工程的一般过程123.2.2定义IO设备133.2.3变量的定义及管理173.2.4 组态王的命令语言25结束语27附 录28参考文献29摘要本论文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统, 并利用组态软件开发良好的运行管理界面。变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。本系统包含三台水泵电机,它们组成变频循环运行方式。采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频
3、率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。关键词:变频调速,恒压供水,PLC,组态软件1 绪论1.1 课题的提出水和电是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能源短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度较低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小
4、区供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到小区住户的正常工作和生活,也直接体现了小区物业管理水平的高低。传统的小区供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下1:(1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。(2) 气压罐供水具有体
5、积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,而出水压力无谓的增高,也使浪费加大,从而限制了其发展。(3) 水塔高位水箱供水具有控制方式简单、运行经济合理、短时间维修或停电可不停水等优点,但存在基建投资大,占地面积大,维护不方便,水泵电机为硬起动,启动电流大等缺点,频繁起动易损坏联轴器,目前主要应用于高层建筑。(4) 液力耦合器和电池滑差离合器调速的供水方式易漏油,发热需冷却,效率低,改造麻烦,只能是一对一驱动,需经常检修;优点是价格低廉,结构简单明了,维
6、修方便。(5) 单片机变频调速供水系统也能做到变频调速,自动化程度要优于上面4种供水方式,但是系统开发周期比较长,对操作员的素质要求比较高,可靠性比较低,维修不方便,且不适用于恶劣的工业环境。综上所述,传统的供水方式普遍不同程度的存在浪费水力、电力资源;效率低;可靠性差;自动化程度不高等缺点,严重影响了居民的用水和工业系统中的用水。目前的供水方式朝向高效节能、自动可靠的方向发展,变频调速技术以其显着的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用,特别是在城乡工业用水的各级加压系统,居民生活用水的恒压供水系统中,变频调速水泵节能效果尤为突出,其优越性表
7、现在:一是节能显著;二是在开、停机时能减小电流对电网的冲击以及供水水压对管网系统的冲击;三是能减小水泵、电机自身的机械冲击损耗2。基于PLC和变频技术的恒压供水系统集变频技术、电气技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,同时系统具有良好的节能性,这在能源日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。1.2本课题的主要研究内容本设计是以小区供水系统为控制对象,采用PLC和变频技术相结合技术,设计一套城市小区恒压供水系统,并引用计算机对供水系统进行远程监控和管理保证整个系统运行可靠,安全节能,
8、获得最佳的运行工况。PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,本设计中有3个贮水池,3台水泵,采用部分流量调节方法,即3台水泵中只有1台水泵在变频器控制下作变速运行,其余水泵做恒速运行。PLC根据管网压力自动控制各个水泵之间切换,并根据压力检测值和给定值之间偏差进行PID运算,输出给变频器控制其输出频率,调节流量,使供水管网压力恒定。各水泵切换遵循先起先停、先停先起原则。根据以上控制要求,进行系统总体控制方案设计。硬件设备选型、PLC选型,估算所需I/O点数,进行I/O模块选型,绘制系统硬件连接图:包括系统硬件配置图、I/O
9、连接图,分配I/O点数,列出I/O分配表,熟练使用相关软件,设计梯形图控制程序,对程序进行调试和修改并设计监控系统。2 系统的理论分析及控制方案确定2.1 变频恒压供水系统的理论分析2.1.1 电动机的调速原理水泵电机多采用三相异步电动机,而其转速公式为: (2.1) 式中:f表示电源频率,p表示电动机极对数,s表示转差率。从上式可知,三相异步电动机的调速方法有:(l) 改变电源频率(2) 改变电机极对数(3) 改变转差率改变电机极对数调速的调控方式控制简单,投资省,节能效果显著,效率高,但需要专门的变极电机,是有级调速,而且级差比较大,即变速时转速变化较大,转矩也变化大,因此只适用于特定转速
10、的生产机器。改变转差率调速为了保证其较大的调速范围一般采用串级调速的方式,其最大优点是它可以回收转差功率,节能效果好,且调速性能也好,但由于线路过于复杂,增加了中间环节的电能损耗7,且成本高而影响它的推广价值。下面重点分析改变电源频率调速的方法及特点。根据公式可知,当转差率变化不大时,异步电动机的转速n基本上与电源频率f成正比。连续调节电源频率,就可以平滑地改变电动机的转速。但是,单一地调节电源频率,将导致电机运行性能恶化。随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用。2.1.2 变频恒压供水系统的节能原理供水系统的扬程特性是以供水系统
11、管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线,如图2.1所示。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Qu间的关系H=f(Qu)。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下扬程H与流量Q之间的关系曲线,如图2.1所示。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H=f(Qc)。扬程特性曲线和管阻特性曲线的交点
12、,称为供水系统的工作点,如图2.1中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图2.1 恒压供水系统的基本特征变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。在供水系统中,通常以流量为控制目的,常用的控制方法为阀门控制法和转速控制法。阀门控制法是
13、通过调节阀门开度来调节流量,水泵电机转速保持不变。其实质是通过改变水路中的阻力大小来改变流量,因此,管阻将随阀门开度的改变而改变,但扬程特性不变。由于实际用水中,需水量是变化的,若阀门开度在一段时间内保持不变,必然要造成超压或欠压现象的出现。转速控制法是通过改变水泵电机的转速来调节流量,而阀门开度保持不变,是通过改变水的动能改变流量。因此,扬程特性将随水泵转速的改变而改变,但管阻特性不变。变频调速供水方式属于转速控制。其工作原理是根据用户用水量的变化自动地调整水泵电机的转速,使管网压力始终保持恒定,当用水量增大时电机加速,用水量减小时电机减速。由流体力学可知,水泵给管网供水时,水泵的输出功率P
14、与管网的水压H及出水流量Q的乘积成正比;水泵的转速n与出水流量Q成正比;管网的水压H与出水流量Q的平方成正比。由上述关系有,水泵的输出功率P与转速n三次方成正比,即: (2.2) (2.3) (2.4) (2.5)式中k、k1、k2、k3为比例常数。图2.2 管网及水泵的运行特性曲线当用阀门控制时,若供水量高峰水泵工作在E点,流量为Q1,扬程为H0,当供水量从Q1减小到Q2时,必须关小阀门,这时阀门的摩擦阻力变大,阻力曲线从b3移到b1,扬程特性曲线不变。而扬程则从H0上升到H1,运行工况点从E点移到F点,此时水泵的输出功率正比于H1Q2。当用调速控制时,若采用恒压(H0),变速泵(n2)供水
15、,管阻特性曲线为b2,扬程特性变为曲线n2,工作点从E点移到D点。此时水泵输出功率正比于H0Q2,由于H1H0,所以当用阀门控制流量时,有正比于(H1H0)Q2的功率被浪费掉,并且随着阀门的不断关小,阀门的摩擦阻力不断变大,管阻特性曲线上移,运行工况点也随之上移,于是H1增大,而被浪费的功率要随之增加。所以调速控制方式要比阀门控制方式供水功率要小得多,节能效果显著。2.2 变频恒压供水系统的组成及原理图2.2.1变频恒压供水系统的组成PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图2.3所示:图2.3变频恒压
16、供水系统控制流程图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。此信号是模拟信
17、号,读入PLC时,需进行A/D转换。另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测,检测结果可以送给PLC,作为数字量输入;水池水位信号反映水泵的进水水源是否充足。信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。此信号来自安装于水池中的液位传感器;报警信号反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。(3) 控制机构:供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的压力、液位、报警信号进行采集,对
18、来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵机组)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。根据水泵机组中水泵被变频器拖动的情况不同,变频器有两种工作方式即变频循环式和变频固定式,变频循环式即变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统先将变频器从该水泵电机中脱出,将该泵切换为工频的同时用变频去拖动另一台水泵电机;变频固定式是变频器拖动某一台水泵作为调速泵,当这台水泵运行在
19、50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统直接启动另一台恒速水泵,变频器不做切换,变频器固定拖动的水泵在系统运行前可以选择9,本设计中采用前者。作为一个控制系统,报警是必不可少的重要组成部分。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防止因电机过载、变频器报警、电网过大波动、供水水源中断造成故障,因此系统必须要对各种报警量进行监测,由PLC判断报警类别,进行显示和保护动作控制,以免造成不必要的损失。变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个
20、时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上10。变频恒压供水系统的结构框图如图2.4所示:图2.4变频恒压供水系统框图恒压供水系统通过安装在用户供水管道上的压力变送器实时地测量参考点的水压,检测管网出水压力,并将其转换为420mA的电信号,此检测信号是实现恒压供水的关键参数。由于电信号为模拟量,故必须通过PLC的A/D转换模块才能读入并与设定值进行比较,将比较后的偏差值进行PID运算,再将运算后的数字信号通过D/A转换模块转换成模拟信号作为变频器的输入信号,控制变频器的输出频率,从而控制电动机的转速,进而控
21、制水泵的供水流量,最终使用户供水管道上的压力恒定,实现变频恒压供水。2.2.2变频恒压供水系统控制流程变频恒压供水系统控制流程如下:(l) 系统通电,按照接收到有效的自控系统启动信号后,首先启动变频器拖动变频泵M1工作,根据压力变送器测得的用户管网实际压力和设定压力的偏差调节变频器的输出频率,控制Ml的转速,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间Ml工作在调速运行状态。(2) 当用水量增加水压减小时,压力变送器反馈的水压信号减小,偏差变大,PLC的输出信号变大,变频器的输出频率变大,所以水泵的转速增大,供水量增大,最终水泵的转速达到另一个新的稳定值。反之,
22、当用水量减少水压增加时,通过压力闭环,减小水泵的转速到另一个新的稳定值。(3) 当用水量继续增加,变频器的输出频率达到上限频率50Hz时,若此时用户管网的实际压力还未达到设定压力,并且满足增加水泵的条件(在下节有详细阐述)时,在变频循环式的控制方式下,系统将在PLC的控制下自动投入水泵M2(变速运行),同时变频泵M1做工频运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,满足增加水泵的条件,将继续发生如上转换,将另一台工频泵M3投入运行,变频器输出频率达到上限频率50Hz时,压力仍未达到设定值时,控制系统就会发出水压超限报警。(4) 当用水量下降水压升高,变频器的输出
23、频率降至下限频率,用户管网的实际水压仍高于设定压力值,并且满足减少水泵的条件时,系统将工频泵M2关掉,恢复对水压的闭环调节,使压力重新达到设定值。当用水量继续下降,并且满足减少水泵的条件时,将继续发生如上转换,将另一台工频泵M3关掉。2.2.3 水泵切换条件分析在上述的系统工作流程中,我们提到当变频泵己运行在上限频率,此时管网的实际压力仍低于设定压力,此时需要增加水泵来满足供水要求,达到恒压的目的;当变频泵和工频泵都在运行且变频泵己运行在下限频率,此时管网的实际压力仍高于设定压力,此时需要减少工频泵来减少供水流量,达到恒压的目的。那么何时进行切换,才能使系统提供稳定可靠的供水压力,同时使机组不
24、过于频繁的切换呢?由于电网的限制以及变频器和电机工作频率的限制,50HZ成为频率调节的上限频率。另外,变频器的输出频率不能够为负值,最低只能是0HZ。其实,在实际应用中,变频器的输出频率是不可能降到0HZ。因为当水泵机组运行,电机带动水泵向管网供水时,由于管网中的水压会反推水泵,给带动水泵运行的电机一个反向的力矩,同时这个水压也在一定程度上阻止源水池中的水进入管网,因此,当电机运行频率下降到一个值时,水泵就己经抽不出水了,实际的供水压力也不会随着电机频率的下降而下降。这个频率在实际应用中就是电机运行的下限频率。这个频率远大于0HZ,具体数值与水泵特性及系统所使用的场所有关,一般在20HZ左右。
25、所以选择50HZ和20HZ作为水泵机组切换的上下限频率。当输出频率达到上限频率时,实际供水压力在设定压力上下波动。若出现时就进行机组切换,很可能由于新增加了一台机组运行,供水压力一下就超过了设定压力。在极端的情况下,运行机组增加后,实际供水压力超过设定供水压力,而新增加的机组在变频器的下限频率运行,此时又满足了机组切换的停机条件,需要将一个在工频状态下运行的机组停掉。如果用水状况不变,供水泵站中的所有能够自动投切的机组将一直这样投入切出再投入再切出地循环下去,这增加了机组切换的次数,使系统一直处于不稳定的状态之中,实际供水压力也会在很大的压力范围内震荡。这样的工作状态既无法提供稳定可靠的供水压
26、力,也使得机组由于相互切换频繁而增大磨损,减少运行寿命。另外,实际供水压力超调的影响以及现场的干扰使实际压力的测量值有尖峰,这两种情况都可能使机组切换的判别条件在一个比较短的时间内满足。所以,在实际应用中,相应的判别条件是通过对上面两个判别条件的修改得到的,其实质就是增加了回滞环的应用和判别条件的延时成立。实际的机组切换判别条件如下11:加泵条件: 且延时判别成立 (2.6)减泵条件: 且延时判别成立 (2.7)式中: :上限频率 :下限频率:设定压力 :反馈压力3软硬件的调试3.1组态王6.5的简介组态王是北京亚控科技发展有限公司开发的一个集成人机界面(HMI)系统和监控管理系统的工业上位监
27、控软件,可与可编程控制器(PLC)、智能模块、板卡智能仪表、远程数据采集装置(RTV)等多种外部设备进行通讯。组态王6.5采用最新的JAVA 2核心技术,功能更丰富,操作更简单。整个企业的自动化监控将以一个门户网站的形式呈现给使用者,并且不同工作职责的使用者使用各自的授权口令完成各自的操作,这包括现场的操作者可以完成设备的起停、中控室的工程师可以完成工艺参数的整定、办公室的决策者可以实时掌握生产成本、设备利用率及产量等数据。组态王6.5的Internet功能逼真再现场画面,使您在任何时间任何地点均可实时掌控企业每一个生产细节得以实现,现场的流程画面、过程数据、趋势曲线、生产报表(支持报表打印和
28、数据下载)、操作记录和报警等均轻松浏览。画面改进1.支持大画面、导航图:用户可以制作任意大小的画面,利用滚动条和导航图控制画面显示内容;绘制、移动、选择图素时,画面自动跟踪滚动。 2.方便的变量替换:可以单独替换某个画面中的变量,也可以在画面中任意选中的图素范围内进行变量替换。3.自定义菜单:支持二级子菜单。4.丰富的提示文本:系统提供丰富的图素提示条文本,包括简单图素和组合图素。5.任意选择画面中的图素:在画面中使用键盘和鼠标结合可以任意选择多个图素进行组合、排列等操作变量1.定义结构成员时可以定义基本属性,例如变量属性、报警属性和记录属性等。2.定义结构变量时自动继承结构成员的属性。3.结
29、构变量可整体赋值。4.结构变量可作为自定义函数的参数。5.在数据词典中可以任意选择多个变量集中修改变量共有属性。3.2 组态王的基本操作3.2.1 制作一个工程的一般过程建立新组态王工程的一般过程是:1.设计图形界面(定义画面)2.定义设备3.构造数据库(定义变量)4.建立动画连接5.运行和调试建立组态王新工程创建工程路径启动“组态王”工程管理器(ProjManager),选择菜单“文件新建工程”或单击“新建”按钮单击“下一步”继续。弹出“新建工程向导之二对话框”在工程路径文本框中输入一个有效的工程路径,或单击“浏览”按钮,在弹出的路径选择对话框中选择一个有效的路径。单击“下一步”继续。弹出“
30、新建工程向导之三对话框,创建组态画面第一步:定义新画面进入新建的组态王工程,选择工程浏览器左侧大纲项“文件画面”,在工程浏览器右侧用鼠标左键双击“新建”图标在“画面名称”处输入新的画面名称,如“Test”,其它属性目前不用更改,(关于其它属性的设置请参见“第四章 组态王开发环境工程浏览器”)。点击“确定”按钮进入内嵌的组态王画面开发系统第二步:在组态王开发系统中从“工具箱”中分别选择“矩形”和“文本”图标,绘制一个矩形对象和一个文本对象3.2.2定义IO设备继续上节的工程。选择工程浏览器左侧大纲项“设备COM1”,在工程浏览器右侧用鼠标左键双击“新建”图标,运行“设备配置向导”, 选择“仿真P
31、LC”的“串行”项,单击“下一步”,弹出“设备配置向导”,为外部设备取一个名称,输入PLC,单击“下一步”,弹出“设备配置向导” 为设备选择连接串口,假设为COM1,单击“下一步”,弹出“设备配置向导”,填写设备地址,假设为1,单击“下一步”,弹出“设备配置向导”设置通信故障恢复参数(一般情况下使用系统默认设置即可),单击“下一步”,弹出“设备配置向导”,请检查各项设置是否正确,确认无误后,单击“完成”。 设备定义完成后,可以在工程浏览器的右侧看到新建的外部设备“PLC”。在定义数据库变量时,只要把IO变量连结到这台设备上,它就可以和组态王交换数据了。构造数据库继续上节的工程。选择工程浏览器左
32、侧大纲项“数据库数据词典”,在工程浏览器右侧用鼠标左键双击“新建”图标,弹出“变量属性”对话框在“变量名”处输入变量名,如:a;在“变量类型”处选择变量类型如:内存实数,其它属性目前不用更改,单击“确定”即可。下面继续定义一个IO变量,在“变量名”处输入变量名,如:b;在“变量类型”处选择变量类型如:IO整数;在“连接设备”中选择先前定义好的IO设备:PLC;在“寄存器”中定义为:I0.0;在“数据类型”中定义为:bit类型。其它属性目前不用更改,单击“确定”即可。创建动画连接继续上节的工程。双击图形对象即矩形,可弹出“动画连接”对话框,用鼠标单击“填充”按钮。在“表达式”处输入“a”,“缺省
33、填充刷”的颜色改为黄色,其余属性目前不用更改。单击“确定”,再单击“确定”返回组态王开发系统。为了让矩形动起来,需要使变量即a能够动态变化,选择“编辑画面属性”菜单命令,弹出对话框单击“命令语言”按钮,弹出画面命令语言对话框,在编辑框处输入命令语言:if(本站点压力值=50&本站点手自切换=1)本站点水流3=0;if(本站点手自切换=1&本站点压力值20)本站点水流3=0;if(本站点手自切换=1)本站点水流1=本站点水流1+5;if(本站点水流120)本站点水流1=0;if(本站点手自切换=1)本站点水流2=本站点水流2+5;if(本站点水流220)本站点水流2=0;if(本站点手自切换=1
34、)本站点水流3=本站点水流3+5;if(本站点水流320)本站点水流3=0;if(本站点泵1阀=1&本站点手自切换=0)本站点水流1=本站点水流1+5;if(本站点水流120)本站点水流1=0;if(本站点泵2阀=1&本站点手自切换=0)本站点水流2=本站点水流2+5;if(本站点水流220)本站点水流2=0;if(本站点泵3阀=1&本站点手自切换=0)本站点水流3=本站点水流3+5;if(本站点水流320)本站点水流3=0;可将“每3000毫秒”改为“每100毫秒”,此为画面执行命令语言的执行周期。单击“确认”,及“确定”回到开发系统。双击文本对象“#”,可弹出“动画连接”对话框,用鼠标单击
35、“模拟值输出”按钮,弹出对话框在“表达式”处输入“b”,其余属性目前不用更改。单击“确定”,再单击“确定”返回组态王开发系统。运行和调试组态王工程已经初步建立起来,进入到运行和调试阶段。在组态王开发系统中选择“文件切换到 View”菜单命令,进入组态王运行系统。在运行系统中选择“画面打开”命令,从“打开画面”窗口选择“Test”画面。显示出组态王运行系统画面,即可看到矩形框和文本在动态变化3.2.3变量的定义及管理(一)变量的类型组态王系统中定义的变量与一般程序设计语言,比如BASIC、PASCAL、C语言,定义的变量有很大的不同,既能满足程序设计的一般需要,又考虑到工控软件的特殊需要。基本变
36、量类型变量的基本类型共有两类:内存变量、I/O变量。IO变量是指可与外部数据采集程序直接进行数据交换的变量,如下位机数据采集设备(如PLC、仪表等)或其它应用程序(如DDE、OPC服务器等)。内存变量是指那些不需要和其它应用程序交换数据、也不需要从下位机得到数据、只在“组态王”内需要的变量,比如计算过程的中间变量,就可以设置成“内存变量”。变量的数据类型组态王中变量的数据类型与一般程序设计语言中的变量比较类似,主要有以下几种:实型变量类似一般程序设计语言中的浮点型变量,用于表示浮点(float)型数据,取值范围10E-3810E+38,有效值7位。离散变量类似一般程序设计语言中的布尔(BOOL
37、)变量,只有0,1两种取值,用于表示一些开关量。字符串型变量类似一般程序设计语言中的字符串变量,可用于记录一些有特定含义的字符串,如名称,密码等。整数变量类似一般程序设计语言中的有符号长整数型变量,用于表示带符号的整型数据,取值范围(2147483648)2147483647。结构变量当组态王工程中定义了结构变量时,在变量类型的下拉列表框中会自动列出已定义的结构变量,一个结构变量做为一种变量类型,结构变量下可包含多个成员(基本变量),成员类型可以为:内存离散、内存整型、内存实型、内存字符串、IO离散、IO整型、IO实型、IO字符串。 基本变量的定义内存离散、内存实型、内存长整数、内存字符串、I
38、/O离散、I/O实型、I/O长整数、I/O字符串,这八种基本类型的变量是通过 “变量属性”对话框定义的,同时在“变量属性”对话框的属性卡片中设置它们的部分属性。变量及变量属性的定义在工程浏览器中左边的目录树中选择“数据词典”项,右侧的内容显示区会显示当前工程中所定义的变量。双击“新建”图标,弹出“定义变量”属性对话框。组态王的变量属性由基本属性、报警配置、记录配置三个属性页组成。采用这种卡片式管理方式,用户只要用鼠标单击卡片顶部的属性标签,则该属性卡片有效,用户可以定义相应的属性。“变量属性”对话框如下所示:单击“确定”按钮,则工程人员定义的变量有效时保存新建的变量名到数据库的数据词典中。若变
39、量名不合法,会弹出提示对话框提醒工程人员修改变量名。单击“取消”按钮,则工程人员定义的变量无效,并返回“数据词典”界面I/O设备管理与动画连接设备管理组态王的设备管理结构列出已配置的与组态王通讯的各种I/O设备名,每个设备名实际上是具体设备的逻辑名称(简称逻辑设备名,以此区别I/O设备生产厂家提供的实际设备名),每一个逻辑设备名对应一个相应的驱动程序, 以此与实际设备相对应。组态王的设备管理增加了驱动设备的配置向导,工程人员只要按照配置向导的提示进行相应的参数设置,选择I/O设备的生产厂家、设备名称、通讯方式,指定设备的逻辑名称和通讯地址,则组态王自动完成驱动程序的启动和通信,不再需要工程人员
40、人工进行。(二)定义串口类设备以及设置串口参数如何定义串口类设备工程人员根据设备配置向导就可以完成串口设备的配置,组态王最多支持128个串口。操作步骤如下:1、在工程浏览器的目录显示区,用鼠标左键单击大纲项设备下的成员COM1或COM2,则在目录内容显示区出现“新建”图标,选中“新建”图标后用左键双击,弹出“设备配置向导”对话框;或者用右键单击,则弹出浮动式菜单,选择菜单命令“新建逻辑设备”,也弹出“设备配置向导”对话框,:工程人员从树形设备列表区中可选择PLC、智能仪表、智能模块、板卡、变频器等节点中的一个。然后选择要配置串口设备的生产厂家、设备名称、通讯方式;PLC、智能仪表、智能模块、变
41、频器等设备通常与计算机的串口相连进行数据通讯。1、单击“下一步”按钮,则弹出如下设备配置向导“设备名称”对话框,工程人员给要配置的串口设备指定一个逻辑名称。单击“上一步”按钮,则可返回上一个对话框。2、继续单击“下一步”按钮,则弹出如下设备配置向导“选择串口号”对话框,3、继续单击“下一步”按钮,则弹出如下设备配置向导“设备地址设置”对话框,3、继续单击“下一步”按钮,则弹出如下设备配置向导“设备地址设置”对话框,:如何设置串口参数 对于不同的串口设备,其串口通讯的参数是不一样的,如波特率、数据位、校验位等。所以在定义完设备之后,还需要对计算机通讯时串口的参数进行设置。如上节中定义设备时,选择
42、了COM1口,则在工程浏览器的目录显示区,选择“设备”,双击“COM1”图标,弹出“设置串口COM1”对话框,(三)仿真PLC使用程序在实际运行中是通过I/O设备和下位机交换数据的,当程序在调试时,可以使用仿真I/O设备模拟下位机向画面程序提供数据,为画面程序的调试提供方便。组态王提供一个仿真PLC设备,用来模拟实际设备向程序提供数据,供用调试。仿真PLC的定义在使用仿真PLC设备前,首先要定义它,实际PLC设备都是通过计算机的串口向组态王提供数据,所以仿真PLC设备也是模拟安装到串口COM上,定义过程和步骤为:1. 在组态王的工程浏览器中,从左边的工程目录显示区中选择大纲项设备下的成员名CO
43、M1或COM2,然后在右边的目录内容显示区中用左键双击“新建”图标,则弹出“设备配置向导”对话框I/O设备列表显示区中,选中PLC设备,单击符号“+”将该节点展开,再选中“亚控”,单击符号“+”将该节点展开,选中“仿真PLC”设备,再单击符号“+”将该节点展开,选中“串行”。2 单击“下一步”按钮,则弹出“设备配置向导逻辑名称”对话框在编辑框输入一个仿真PLC设备的逻辑名称,例如设定为“simu”。3 继续单击“下一步”按钮,则弹出“设备配置向导选择串口号”4 继续单击“下一步”按钮,则弹出“设备配置向导设备地址设置指南”对话框在编辑框中输入仿真PLC设备的地址。5 继续单击“下一步”按钮,则
44、弹出“设备配置向导通讯参数”:6 继续单击“下一步”按钮,则弹出“设备配置向导信息总结”单击“完成”按钮,则设备安装完毕,单击“上一步”,可返回上一次操作进行修改。仿真PLC设备安装完毕后,可在工程浏览器进行查看,选择大纲项设备下的成员名COM1,则在右边的目录内容显示区可以已安装的设备定义I/O变量定义一个I/O型变量old_static,用于读写常量寄存器STATIC100中的数据,在工程浏览器中,从左边的工程目录显示区中选择大纲项数据库下的成员数据词典,然后在右边的目录内容显示区中用左键双击“新建”图标,弹出“变量属性”对话框,在此对话框中,变量名定义为old_static,变量类型为I
45、/O实数,连接设备选择simu,寄存器定为STATIC100,寄存器的数据类型定为 INT,读写属性为读写(根据寄存器类型定义),其它的定义见对话框,单击“确定”按钮,则old_static变量定义结束。 (四)动画连接的概述工程人员在组态王开发系统中制作的画面都是静态的,那么它们如何才能反映工业现场的状况呢?这就需要通过实时数据库,因为只有数据库中的变量才是与现场状况同步变化的。数据库变量的变化又如何导致画面的动画效果呢?通过“动画连接”所谓“动画连接”就是建立画面的图素与数据库变量的对应关系。这样,工业现场的数据,比如温度、液面高度等,当它们发生变化时,通过I/O接口,将引起实时数据库中变量的变化,如果设计者曾经定义了一个画面图素比如指针与这个变量相关,我们将会看到指针在同步偏转。动画连接的引入是设计人机接口的一次突破,它把工程人员从重复的图形编程中解放出来,为工程人员提供了标准的工业控制图形界面,并且由可编程的命令语言连接来增强图形界面的功能。图形对象与变量之间有丰富的连接类型,给工程人员设计图形界面提供了极大的方便。“组态王”系统还为部分动画连接的图形对象设置了访问权限,这对于保障系统的安全具有重要的意义。图形对象可以按动画连接的要求改变颜色、尺寸、位置、填充百分数等,一个图形对象又可以同时定义多个连接。把这些动画连接组合起来,应用程序将呈现出令人难以想象的图形动画效果。
限制150内