基于MATLAB的汽车车牌的号码识别系统设计.doc
《基于MATLAB的汽车车牌的号码识别系统设计.doc》由会员分享,可在线阅读,更多相关《基于MATLAB的汽车车牌的号码识别系统设计.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2014 届毕业设计 基于MATLAB的汽车车牌的号码识别系统设计 学 校 : 成都理工大学工程技术学院学生姓名: 指导教师: 职称 专 业: 通信工程 班 级: 通信2班 完成时间: 2014年5月 摘 要 汽车车牌的识别系统是当今社会智能交通管理的重要组成部分之一。车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。本文的图像预处理模块是将图像灰度化和用Roberts算子进行边缘检测的步骤。车牌定位和分割采用的是利
2、用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。字符的分割采用的方法是以二值化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。本文即是针对其核心部分进行阐述并使用MATLAB软件环境中进行字符分割的仿真。 关键词:MATLAB、图像预处理、车牌定位、字符分割 ABSTRACTVehicle license plate recognition system is one important of the modern intelligent traffic management. License plate recognition syste
3、m to make more intelligent vehicle management, digital, Effective traffic management to enhance the convenience and effectiveness. License plate recognition system includes image acquisition, image preprocessing, license plate localization, character segmentation, character recognition and other fiv
4、e core parts. In this paper, preprocessing, license plate localization, character segmentation method for the realization of three modules.This is the image preprocessing module and the use of the image grayscale Roberts edge detection operator steps. License plate location and segmentation using ma
5、thematical morphology method is used to determine the license plate location,Re-use license plate color segmentation method of color information to complete the license plate area segmentation. Character segmentation approach is based on the license plate after the binary part of the vertical projec
6、tion, Then scan in the vertical projection, thus completing the character segmentation. This article is described for the core part and use the MATLAB software environment, the simulation experiments for character segmentation. Keywords: MATLAB Software, Image preprocessing, License plate localizati
7、on, Character segmentation目 录1 绪论11.1 选题背景11.2 设计前景11.3 车牌号码识别原理11.4 MATLAB简介22 车牌号码识别系统总体方案32.1 车牌号码识别系统硬件介绍32.2 车牌号码识别系统软件设计4 2.2.1 图像预处理5 2.2.2 车牌定位5 2.2.3 牌照字符分割5 2.2.4 牌照字符识别52.3 本章小节63 图像预处理73.1 图像灰度化73.2. 灰度拉伸83.3 图像平滑83.4 边缘提取94 车牌定位104.1 车牌特征的信息分析11 4.1.1 车牌特征的信息分析11 4.1.2 常见车牌颜色特征的信息12 4.1
8、.3 车牌特征分析结论134.2 车牌号码初定位13 4.2.1 车牌二值化14 4.2.2 图像二值化的基本原理144.3 牌照区域的分割155 牌照字符分割165.1 字符字符切分综述16 5.1.1 字符分割16 5.1.2 字符归一化166 车牌字符的识别176.1 车牌字符识别综述176.2 模版匹配字符识别177 车牌号码识别软件设计结果及分析207.1 车牌识别仿真207.2 结果分析27结束语29致 谢30参考文献31附录 程序清单321 绪论1.1 选题背景 汽车牌照自动识别系统是制约道路交通智能化的重要因素,包括车牌定位、字符分割和字符识别三个主要部分。由于牌照图象在原始图
9、象中是很有特征的一个子区域,确切说是水平度较高的横向近似的长方形,它在原始图象中的相对位置比较集中,而且其灰度值与周边区域有明显的不同,因而在其边缘形成了灰度突变的边界,这样就便于通过边缘检测来对图象进行分割,从而定位车辆牌照,然后利用车牌的彩色信息的彩色分割方法。在字符识别部分,利用模板匹配字符识别算法进行对车牌号码的识别。实验结果表明,本文提出的方法具有不错的识别性能。随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。汽车牌照的自动识别技术已经得到了广泛应用。1.2 设计前景牌照自动识别是
10、一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。1.3 车牌号码识别原理 车辆牌照识别系统的基本工作原理为:
11、将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。我们知道输入的彩色图像包含大量颜色信息,会占用计算机较多的存储空间,且处理时也会降低系统的执行速度,因此对图像进行识别等处理时,通常将彩色图像转换为灰度图像,以加快处理速度。对图像进行灰度化处理、边缘提取、再利用形态学方法对车牌进行定位。具体步骤如下:首先通过MATLAB软件对图像进行灰度转换,二值化处理然后采用4X1的结构元素对图像进行腐蚀,去除图
12、像的噪声。采用25X25的结构元素,对图像进行闭合应算使车牌所在的区域形成连通。在进行形态学滤波去除其它区域。1.4 MATLAB简介 Matlab(Matrix Laboratory)是美国 MathWorks公司开发的一套高性能的数值分析和计算软件,用于概念设计,算法开发,建模仿真,实时实现的理想的集成环境,是目前最好的科学计算类软件之一。MATLAB将矩阵运算、数值分析、图形处理、编程技术结合在一起,为用户提供了一个强有力的科学及工程问题的分析计算和程序设计工具,它还提供了专业水平的符号计算、文字处理、可视化建模仿真和实时控制等功能,是具有全部语言功能和特征的新一代软件开发平台。MATL
13、AB已发展成为适合众多学科,多种工作平台、功能强大的大型软件。在欧美等国家的高校,MATLAB已成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的基本教学工具。成为攻读学位的本科、硕士、博士生必须掌握的基本技能。在设计研究单位和工业开发部门,MATLAB被广泛的应用于研究和解决各种具体问题。在中国,MATLAB也已日益受到重视,短时间内就将盛行起来,因为无论哪个学科或工程领域都可以从MATLAB中找到合适的功能。 2 车牌号码识别系统总体方案一个完整的车辆牌照识别系统是一个复杂的系统,应该包括图像采集、图像预处理、车牌定位、字符切分、字符识别以及图像编码
14、、数码传输与更新等步骤,基本可以分为硬件部分和软件部分,硬件部分主要完成车辆图像的摄取采集,软件部分主要完成对采集到的车辆图像进行车辆牌照定位、车牌字符切分与车牌字符识别等工作,这部分工作最为复杂,最后对识别结果进行数据传送和存储,将处理后的识别信息交给管理系统进行管理。整个系统的核心是软件部分的工作,能否通过牌照对车辆进行有效管理,很大程度上取决于软件部分识别车牌的准确性。目前,研究的车牌识别系统大部分都是基于直接法,即是基于图像理解的汽车牌照识别,该方法的一般结构如下:图1 车牌识别系统流程图2.1 车牌号码识别系统硬件介绍一个车牌识别系统的基本硬件配置由摄像机、主控机、采集卡和照明装置组
15、成。例如在停车场管理系统中,系统硬件主要包括车辆传感探测器、高性能工控计算机、高分辨率CCD摄像机、高放大倍数镜头、CCD自动亮度控制器和视频采集卡等。首先是探测车辆的接近、通过和停留等。常用的有光探测器、微波雷达通过型探测器、测速雷达探测器、声探测器、红外探测器、电磁感应探测器和压敏探测器等。我国停车场应用较多的是红外探测器和电磁感应环探测器。设置在停车场入口和出口的两对红外发射和接收设备进行车辆检测。利用编码调制信号,增强抗干扰的能力,具有较强的可靠性。前端工控机利用红外线探测到车辆经过的信号时,控制图像采集卡抓拍图像,并对抓拍的汽车图像进行牌照识别,同时控制摄像机光圈的大小,以适应外界环
16、境不同的光照条件。然后将识别出的牌照信息储存到服务器中,当车辆离开时,同样的进行牌照识别,将其与前面输入的牌照信息进行对比,计算出停车时间,然后计费。 本课题主要侧重算法的研究,主要工作是设计软件,对已摄取到的卡口车辆照片实现车牌识别。 2.2 车牌号码识别系统软件设计 硬件设备采集到图片后首先要考虑图像的存储格式。目前比较常用的图像格式有*.BMP 、*.JPG、*.GIF、*.PCX 等,本课题采集到的图片是*.JPG 的格式。 软件系统的编写大多采用VC或者MATLAB语言,本课题选用了 MATLAB语言。MATLAB具有以下优点: (1)MATLAB编程效率高,使用方便。MATLAB以
17、矩阵作为基本语言要素大大提高了数值计算的编程效率。MATLAB本身拥有丰富的函数库,并具有结构化的流程控制语句和运算符,用户在使用过程中能够方便自如地应用。其图像处理工具箱更是大大扩展了MATLAB解决图像处理问题的能力,其他还有诸如用于神经网络和小波的工具箱等,对于算法的分析都有着很大的帮助。 (2)MATLAB扩充能力强,交互性好,移植性和开放性较好。MATLAB的库函数同用户文件在形式上是一样的,用户可以根据自己的需求方便地建立与扩充新的库函数,扩充其功能。MATLAB可在Windows 系列、UNIX、Linux、VMS 6.1 、PowerMac 平台上使用,且所有的核心文件和工具箱
18、文件都是公开的,用户可以修改源文件构成新的工具箱,从而可以扩充很多新的功能,利于算法的研究和改进。 (3)较强的图形控制和处理功能,自带的API 使得用户可以方便地在MATLAB与C、C+ 等其他程序设计语言之间建立数据通信。 本文设计的系统采用MATLAB搭建车辆牌照识别系统,具有非常明显的优势: a.可以直接使用MATLAB的Image Acquisition Toolbox 、Image Processing Toolbox 以及Neural Network Toolbox作为骨架来搭建整个系统。 b.使用MATLAB的图形用户界面技术(GUI )编写牌照识别系统面板,可以达到与牌照定位
19、切分程序及字符识别程序的无缝连接。c.使用专业工具箱,使得研究人员不必过于关心程序的细节问题,可以将主要的精力放在算法的研究、设计方面,极大地减少了工作量,为算法的研究改进提供了先决条件。我们知道输入的彩色图像包含大量颜色信息,会占用计算机较多的存储空间,且处理时也会降低系统的执行速度,因此对图像进行识别等处理时,通常将彩色图像转换为灰度图像,以加快处理速度。对图像进行灰度化处理、边缘提取、再利用形态学方法对车牌进行定位。具体步骤如下:首先通过MATLAB软件对图像进行灰度转换,二值化处理然后采用4X1的结构元素对图像进行腐蚀,去除图像的噪声。采用25X25的结构元素,对图像进行闭合应算使车牌
20、所在的区域形成连通。在进行形态学滤波去除其它区域。 2.2.1 图像预处理 由于拍摄时的光照条件、牌照的整洁程度的影响,和摄像机的焦距调整、镜头的光学畸变所产生的噪声都会不同程度地造成牌照字符的边界模糊、细节不清、笔划断开或粗细不均,加上牌照上的污斑等缺陷,致使字符提取困难,进而影响字符识别的准确性。因此,需要对字符在识别之前再进行一次针对性的处理。 2.2.2 车牌定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选
21、定一个最佳的区域作为牌照区域,并将其从图象中分割出来。图2 牌照定位流程图 2.2.3 牌照字符分割完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。图3 牌照字符分割流程图 2.2.4 牌照字符识别字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后
22、与所有的模板进行匹配,最后选最佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。实际应用中,牌照识别系统的识别率与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。这些影响因素不同程度上降低了牌照识别的识别率,也正是牌照识别系统的困难和挑战所在。为了提高识别率,除了不断的完善识别算法,还应该想办
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 MATLAB 汽车 车牌 号码 识别 系统 设计
限制150内