毕业论文外文翻译-电梯安全系统模拟器的设计和评价电梯安全系统.doc
《毕业论文外文翻译-电梯安全系统模拟器的设计和评价电梯安全系统.doc》由会员分享,可在线阅读,更多相关《毕业论文外文翻译-电梯安全系统模拟器的设计和评价电梯安全系统.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本科毕业设计(论文)外文参考文献译文及原文 学 院 机械工程学院 专 业 机械设计制造及其自动化 年级班别 学 号 学生姓名 指导教师 2014 年 5月 1 日 目 录外文参考文献原文1.INTRODUCTION32.OUTLINE OF SAFETY SYSTEM33.SIMULATION MODEL44.EXPERIMENTS65.CONCLUSION6电梯安全系统模拟器的设计和评价电梯安全系统71.引言72.外形安全系统83.仿真模型94.实验125.仿真模型13 A Simulator for the Design and Evaluation of Elevator Safety
2、SystemsABSTRACT We developed a simulator to evaluate the safety of elevator. This simulator includes a dynamic model with a normal state and some abnormal states and a safety logic model. These models are described with a state transition model. This report outlines this simulator, and we show its e
3、ffectiveness by comparing the simulators results with experimental results.KEY WORDS Safety System, Elevator, Simulator, State Transition Model1. INTRODUCTION We developed a simulator to evaluate safety of an elevator. There are some simulators whichsimulate the dynamics of an elevator 1 2. These ha
4、ve a model that shows when the elevator is normal or has a specific error. There are no simulators which can simulate the state transition of an elevator. A transition of the dynamic characteristics of an elevator according to the operation of the safety logic has a high level of influence in terms
5、of elevator safety. To accurately evaluate safety of an elevator, we need a simulator that can continuously and precisely simulate the state transitions of a running elevator. Therefore, we developed asimulator that combines a safety logic simulation model and a dynamic simulation model, whichexpres
6、ses the consecutive transitions of states of the elevator. Using this simulator allowed us toprecisely express the continuous transitions of an elevator This simulator is composed by the following state transition models.(1) Dynamic simulatessimulation model: this precisely the continuous transition
7、s of a running elevators state.(2) Safety logic simulation model: this simulates safety logic operations according to the continuous transitions of an elevators state. By the integration of the dynamic simulation model(1) and the safety logic simulationmodel(2), we achieved the evaluation of the ele
8、vators safety. In this paper, we explain this new simulator and show its effectiveness by comparing its results with those of experiments.2. OUTLINE OF SAFETY SYSTEMEVALUATION SIMULATOR Figure 3 shows the outline of an elevator system. An elevator is composed of a motor, asafety gear, a brake, a she
9、ave, traction ropes, a car, a counter-weight, and so on. A motor generates the torque to drive. A safety gear is a braking device which stops a car in the emergency, and a brake is a braking device which stops a motor in the emergency. A sheave transmits the torque of a motor to traction ropes. Trac
10、tion ropes connect a car and a counter- weight. Passengers get on a car. A counter- weight is a weight to take balance with a car. An elevator operates according to the combination of these components. Safety of an elevator is secured by the movement of the braking devices in theemergency. The state
11、 transition of braking devices influences safety of an elevator. It is necessary to structure a simulator that can evaluate the influence of a state transition of a certain component on the whole system. Figure 1 shows the outline of this new simulator. The simulator is composed of a dynamic simulat
12、ion model and a safety logic simulation model. The state transitions in the dynamic simulation model and the safety logic simulation model are described as state transition models. A state transition model is a simulation model that uses a state transition diagram. Figure 2 shows an outline of a sta
13、te transition diagram. In a state transition diagram, there are state models that show different states, and conditions that change states are described in each state model. In the simulator, the components which show normal states and abnormal states of an elevator are described by using state tran
14、sition models. For an example, a normal state of a brake is a state of standing by, and an abnormal state is a state of being operated. By coupling each state transition of a component, the influence that a continuous transition in each component gives to a whole system is appreciable. In Figure I,
15、components A, B, and C, are components of an elevator. They are a traction machine, a car, ropes, sheaves, a governor, and so on. Equations of an elevators motion are formed by coupling of the each components motion. We modeled the dynamic characteristics for each component which show normal state a
16、nd some abnormal state, and they form the conditions for the state transitions. The state of each component is changed when the state transition conditions are met. In the safety logic simulation model, we described safety devices as state transition models, too. We modeled each safety device which
17、shows the state of watching an abnormal state and the operating state after an abnormal state is detected. The models of safety devices form the conditions for the state transitions. The transition conditions are set to correspond to the operation condition of each safety device. The models of safet
18、y devices output instructions to operate the braking devices, when the state of the safety devices changes. The next paragraph details the modeling of a dynamic simulation model and a safety logic simulation model for the elevator shown in Figure 3. An elevator is composed of a mechanical system and
19、 an electrical system. The dynamic simulation model of the mechanical system is composed of the dynamic characteristics of the ropes, and so on. The dynamic simulation model of the electrical system consists of the motor characteristics, and so on. Safety logic simulation model is composed of some s
20、afety algorisms.3. SIMULATION MODELA. Dynamic simulation model(1) Modeling of the mechanical system Figure 4 shows the dynamic model of an elevators mechanical system in the normal state. Equations of the motions of each component, which show the normal state and abnormal states, can be changed acco
21、rding to the state transitions of each component. As a result, we can precisely simulate the continuous transitions of the mechanical systems dynamic characteristics. As a first example, we explain the modeling of the state transition of traction between the traction rope and the sheave. The structu
22、re shown in Figure 4 changes when slipping occurs between the traction rope and the sheave. The condition in which the rope doesnt slip can be expressed by equation (1): where Fs is frictional force between the sheave and the rope, is a coefficient of friction, B is the angle of the ropes wrap, T, a
23、nd几are in the portion ofthe rope situated at the sheave, and Iis the either limit forces side of of the tractions ability. 3 When equation (1) doesnt hold, slipping occurs between the sheave and the rope. In turn, FS, which is shown in the next equation, occurs. FS influences the behavior of the car
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业论文 外文 翻译 电梯 安全 系统 模拟器 设计 评价
限制150内