燃煤锅炉的燃烧进程控制-毕业设计外文翻译.docx
《燃煤锅炉的燃烧进程控制-毕业设计外文翻译.docx》由会员分享,可在线阅读,更多相关《燃煤锅炉的燃烧进程控制-毕业设计外文翻译.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 Controlling the Furnace Process in Coal-Fired BoilersThe unstable trends that exist in the market of fuel supplied to thermal power plants and the situations in which the parameters of their operation need to be changed (or preserved), as well as the tendency toward the economical and environmental
2、 requirements placed on them becoming more stringent, are factors that make the problem of controlling the combustion and heat transfer processes in furnace devices very urgent. The solution to this problem has two aspects. The first involves development of a combustion technology and,accordingly, t
3、he design of a furnace device when new installations are designed. The second involves modernization of already existing equipment. In both cases,the technical solutions being adopted must be properly substantiated with the use of both experimental and calculationstudies.The experience Central Boile
4、r-Turbine Institute Research and Production Association (TsKTI) and ZiO specialists gained from operation of boilers and experimental investigations they carried out on models allowed them to propose several new designs of multifuel and maneuverablein other words, controllablefurnace devices that ha
5、d been put in operation at power stations for several years. Along with this, an approximate zero-one-dimensional, zonewise calculation model of the furnace process in boilers had been developed at the TsKTI, which allowed TsKTI specialists to carry out engineering calculations of the main parameter
6、s of this process and calculate studies of furnaces employing different technologies of firing and combustion modes .Naturally, furnace process adjustment methods like changing the air excess factor, stack gas recirculation fraction, and distribution of fuel and air among the tiers of burners, as we
7、ll as other operations written in the boiler operational chart, are used during boiler operation.However, the effect they have on the process is limited in nature. On the other hand, control of the furnace process in a boiler implies the possibility of making substantial changes in the conditions un
8、der which the combustion and heat transfer proceed in order to considerably expand the range of loads, minimize heat losses, reduce the extent to which the furnace is contaminated with slag, decrease the emissions of harmful substances, and shift to another fuel. Such a control can be obtained by ma
9、king use of the following three main factors:(i) the flows of oxidizer and gases being set to move in the flame in a desired aerodynamic manner;(ii) the method used to supply fuel into the furnace and the place at which it is admitted thereto;(iii) the fineness to which the fuel is milled.The latter
10、 case implies that a flame-bed method is used along with the flame method for combusting fuel.The bed combustion method can be implemented in three design versions: mechanical grates with a dense bed, fluidized-bed furnaces, and spouted-bed furnaces.As will be shown below, the first factor can be ma
11、de to work by setting up bulky vortices transferring large volumes of air and combustion products across and along the furnace device. If fuel is fired in a flame, the optimal method of feeding it to the furnace is to admit it to the zones near the centers of circulating vortices, a situation especi
12、ally typical of highly intense furnace devices. The combustion process in these zones features a low air excess factor ( 1) and a long local time for which the components dwell in them, factors that help make the combustion process more stable and reduce the emission of nitrogen oxides .Also importa
13、nt for the control of a furnace process when solid fuel is fired is the fineness to which it is milled; if we wish to minimize incomplete combustion, the degree to which fuel is milled should be harmonized with the location at which the fuel is admitted into the furnace and the method for supplying
14、it there, for the occurrence of unburned carbon may be due not only to incomplete combustion of large-size fuel fractions, but also due to fine ones failing to ignite (especially when the content of volatiles Vdaf 20%).Owing to the possibility of pictorially demonstrating the motion of flows, furnac
15、e aerodynamics is attracting a great deal of attention of researchers and designers who develop and improve furnace devices. At the same time, furnace aerodynamics lies at the heart of mixing (mass transfer), a process the quantitative parameters of which can be estimated only indirectly or by speci
16、al measurements. The quality with which components are mixed in the furnace chamber proper depends on the number, layout, and momenta of the jets flowing out from individual burners or nozzles, as well as on their interaction with the flow of flue gases, with one another, or with the wall.It was sug
17、gested that the gas-jet throw distance be used as a parameter determining the degree to which fuel is mixed with air in the gas burner channel. Such an approach to estimating how efficient the mixing is may to a certain degree be used in analyzing the furnace as a mixing apparatus. Obviously, the gr
18、eater the jet length (and its momentum), the longer the time during which the velocity gradient it creates in the furnace will persist there, a parameter that determines how completely the flows are mixed in it. Note that the higher the degree to which a jet is turbulized at the outlet from a nozzle
19、 or burner, the shorter the distance which it covers, and, accordingly, the less completely the components are mixed in the furnace volume. Once through burners have advantages over swirl ones in this respect.It is was proposed that the extent to which once through jets are mixed as they penetrate w
20、ith velocity w2 and density 2 into a transverse (drift) flow moving with velocity w1 and having density 1 be correlated with the relative jet throw distance in the following wayWhere ks is a proportionality factor that depends on the “pitch” between the jet axes (ks= 1.51.8).The results of an experi
21、mental investigation inwhich the mixing of gas with air in a burner and then in a furnace was studied using the incompleteness of mixing as a parameter are reported in 5.A round once through jet is intensively mixed with the surrounding medium in a furnace within its initial section, where the flow
22、velocity at the jet axis is still equal to the velocity w2 at the nozzle orifice of radius r0.The velocity of the jet blown into the furnace drops very rapidly beyond the confines of the initial section, and the axis it has in the case of wall-mounted burners bends toward the outlet from the furnace
23、.One may consider that there are three theoretical models for analyzing the mixing of jets with flowrate G2 that enter into a stream with flowrate G1. The first model is for the case when jets flow into a “free” space (G1= 0),the second model is for the case when jets flow into a transverse (drift)
24、current with flowrate G1G2,and the third model is for the case when jets flow into a drift stream with flowrate G1G2. The second model represents mixing in the channel of a gas burner, and the third model represents mixing in a furnace chamber. We assume that the mixing pattern we have in a furnace
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 燃煤 锅炉 燃烧 进程 控制 毕业设计 外文 翻译
限制150内