解析函数的几种求法数学系毕业论文.doc
《解析函数的几种求法数学系毕业论文.doc》由会员分享,可在线阅读,更多相关《解析函数的几种求法数学系毕业论文.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解析函数的几种求法摘要 在已知解析函数的实部或虚部的条件下求解析函数,并将其表示为的形式,是复变函数中一个很重要的问题.因此,选择恰当的方法求解析函数就显得非常重要了.本文给出了一些用必要的定理和推论来求解析函数的方法,再以例题说明具体的应用.关键词 解析函数; 调和函数; 柯西黎曼方程 Some Methods Of Analytic FunctionsAbstract Known in the analytic functions real part or imaginary part conditions for analytic functions, and will it says
2、theforms, the complex functions is a very important question. So, choose appropriate method for analytical function is very important. In this paper, some with the necessary theorem and reasoning for the method of analytic functions, again with examples explain specific application.Keywords Analytic
3、 Functions; Harmonic Function; Cauchy-Riemann Equation一 引言从解析函数及调和函数理论我们知道这两类函数有着非常密切的联系:函数在单连通区域内解析的充要条件是及为内的共轭调和函数,已知或中的一个,就可以确定函数,不过可能相差一个实数或纯虚数.这就提出了一个问题:已知调和函数或,如何求其共轭调和函数使解析?这不仅是复变函数理论中的重要问题,同时在物理中的流体力学、空气动力学、电学等领域有重要应用.如在实际应用中,有时要对一对共轭调和函数进行计算与研究.本文就对已知调和函数或,如何求其共轭调和函数使解析方法进行总结与探求.二 预备知识1. 解析
4、函数的定义及柯西黎曼方程的推出定义1 如果函数在区域内可微,则称为区域内的解析函数,或称在区域内解析.若在某一点的某一领域内解析,我们也说在某点解析.若在一点可微,而且设 (1.1)又设其中(1.1)变为 (1.2)因为无论按什么方式趋于零时,(1.2)总是成立的.先设即变点沿平行于实轴的方向趋于点,此时(1.2)成为于是知必然存在,且有 . (1.3)同样,设即变点沿平行于虚轴的方向趋于点,此时(1.2)成为 故知亦必存在,且有 . (1.4)比较(1.3)及(1.4)得出.这是关于及的偏微分方程组,称为柯西黎曼方程.由此我们可以得出:结论1 若在区域中解析,则必满足柯西黎曼方程,即.结论2
5、 若在区域中解析,则.推论1 若函数在区域中解析,则有 .所以有 推论1的证明:证 由于令 则有 加到(1)式,有 .由结论2及,得 .同理用(4)式减去(2)式,有 .由结论2及,得 由(5),(6)式可得 经过代换可得 . 我们称式为以极坐标为参数的柯西黎曼方程.2. Laplace方程及调和函数设在内解析,则由柯西黎曼方程,得 因在内连续,他们必定相等,故在内有同理,在内有即和在内满足Laplace方程:这里是一种运算记号,称为Laplace算子.下面我们给出以极坐标为参数的Laplace方程:设在区域内解析,则由得 .由解析函数的无穷可微性知和在内连续,它们必相等,所以有.同理可得.我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析函数的几种求法 数学系毕业论文 解析 函数 求法 数学系 毕业论文
限制150内