高考数学:高中数学必修+选修知识点归纳总结.docx
《高考数学:高中数学必修+选修知识点归纳总结.docx》由会员分享,可在线阅读,更多相关《高考数学:高中数学必修+选修知识点归纳总结.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修+选修知识点归纳必修1数学知识点第一章:集合与函数概念1、集合三要素:确定性、互异性、无序性。2、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.3、并集.记作:.交集.记作:.全集、补集(CUA)( CU B) = CU(AB) (CUA)( CUB) = CU(AB);简易逻辑:或:有真为真,全假为假。且:有假为假,全真为真。非:真假相反原命题:若P则q; 逆命题:若q则p;否命题:若P则q;逆否命题:若q则p。常用变换:.证证:4、设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合
2、A到集合B的一个函数,记作:.5、定义域值域:利用函数单调性求出所给区间的最大值和最小值,6、函数单调性: (1)定义法:设那么上是增函数;上是减函数.步骤:取值作差变形定号判断(2)导数法:设函数在某个区间内可导,若,则为增函数;若,则为减函数.7、奇偶性为偶函数:图象关于轴对称.函数为奇函数图象关于原点对称.若奇函数在区间上是递增函数,则在区间上也是递增函数若偶函数在区间上是递增函数,则在区间上是递减函数函数的几个重要性质: 如果函数对于一切,都有或f(2a-x)=f(x),那函数的图象关于直线对称. 函数与函数的图象关于直线对称; 函数与函数的图象关于直线对称; 函数与函数的图象关于坐标
3、原点对称.二、函数与导数1、几种常见函数的导数; ; ; ; ;2、导数的运算法则(1). (2). (3).3、复合函数求导法则复合函数的导数和函数的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.解题步骤:分层层层求导作积还原导数的应用:1、在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.切线方程:过点的切线方程,设切点为,则切线方程为,再将P点带入求出即可2、函数的极值(-列表法) (1)极值定义:极值是在附近所有的点,都有,则是函数的极大值; 极值是在附近所有的点,都有,则是函数的极小值.(2)判别方法:如果在附近的左侧0,右侧0,那么是极大值
4、;如果在附近的左侧0,右侧0,那么是极小值.3、求函数的最值 (1)求在内的极值(极大或者极小值)(2)将的各极值点与比较,其中最大的一个为最大值,最小的一个为极小值。函数凹凸性:若定义在某区间上的函数,对于定义域中任意两点有则称f(x)为凸(或凹)函数.第二章:基本初等函数()指数与指数幂的运算1、 一般地,如果,那么叫做 的次方根。其中.2、 当为奇数时,;当为偶数时,.3、 我们规定: ;4、 运算性质: ;.指数函数及其性质1、记住图象:2、性质:对数与对数运算1、指数与对数互化式:;2、对数恒等式:.3、基本性质:,.4、运算性质:当时:;.5、换底公式:.6、重要公式:7、倒数关系
5、:.对数函数及其性质1、记住图象:幂函数1、几种幂函数的图象:函数的应用方程的根与函数的零点1、方程有实根 函数的图象与轴有交点 函数有零点.2、 零点存在性定理:如果函数在区间 上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根.必修2数学知识点空间几何体球的表面积和体积:.1、线面平行:判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行)。性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简称线面平行,则线线平行)。2、面面平行:判定:一个平面内的两条相交直线与另一个平面平行
6、,则这两个平面平行(简称线面平行,则面面平行)。性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。3、线面垂直:定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称线线垂直,则线面垂直)。性质:垂直于同一个平面的两条直线平行。4、面面垂直:定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,则面面垂直)。性质:两个平面互相垂直,则一个平面内垂直于交线的直线
7、垂直于另一个平面。(简称面面垂直,则线面垂直)。做题技巧:证明线面平行:在平面内寻找与所求平行的直线题目中若有中点,看所求平面中的边是否有含某个平行四边形对角线,若有则连接对角线-构成中位线利用线面平行证明线线平行证明线面垂直:直线垂直平面内两个相交直线题目中给定边的值,利用勾股定理直棱柱-棱平行且垂直地面垂直投影的直线垂直原线两个平面垂直,垂直交线的直线垂直另一个面第三章:直线与方程1、倾斜角与斜率:2、直线方程:点斜式:斜截式:两点式:截距式:一般式:3、对于直线:有:;和相交;和重合;.4、对于直线:(重点)有:;(两直线平行,系数交叉相乘差为零)和相交;和重合;.(两直线垂直,对应相乘
8、和相等)5、两点间距离公式:(重点)6、点到直线距离公式:(重点)7、两平行线间的距离公式:(重点):与:平行,则第四章:圆与方程1、圆的方程:标准方程:其中圆心为,半径为.一般方程:.其中圆心为,半径为.2、直线与圆的位置关系直线与圆的位置关系有三种:;. 弦长公式:(重点)3、空间中两点间距离公式:必修3数学知识点算法案例:辗转相除法结果是以相除余数为0而得到利用辗转相除法求最大公约数的步骤如下:):用较大的数m除以较小的数n得到一个商和一个余数;):若0,则n为m,n的最大公约数;若0,则用除数n除以余数得到一个商和一个余数;):若0,则为m,n的最大公约数;若0,则用除数除以余数得到一
9、个商和一个余数;依次计算直至0,此时所得到的即为所求的最大公约数。更相减损术结果是以减数与差相等而得到利用更相减损术求最大公约数的步骤如下:):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。进位制十进制数化为k进制数除k取余法k进制数化为十进制数第二章:统计1、抽样方法:简单随机抽样(总体个数较少)系统抽样(总体个数较多)分层抽样(总体中差异明显)注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概
10、率)均为。2、总体分布的估计:一表二图:频率分布表数据详实频率分布直方图分布直观频率分布折线图便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。茎叶图:(重点)茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。3、总体特征数的估计:平均数:;取值为的频率分别为,则其平均数为;注意:频率分布表计算平均数要取组中值。方差与标准差:一组样本数据方差:;标准差:注:方差与标准差越小,说明样本数据越稳定。平均数反映数据总体水平;方差与标准差反映数据的稳定水平。第三章:概率1、随机事件及其概率:事件:
11、试验的每一种可能的结果,用大写英文字母表示;必然事件、不可能事件、随机事件的特点;随机事件A的概率:.2、古典概型:基本事件:一次试验中可能出现的每一个基本结果;古典概型的特点:所有的基本事件只有有限个;每个基本事件都是等可能发生。古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率.3、几何概型:几何概型的特点:所有的基本事件是无限个;每个基本事件都是等可能发生。几何概型概率计算公式:;其中测度根据题目确定,一般为线段、角度、面积、体积等。4、互斥事件:不可能同时发生的两个事件称为互斥事件;如果事件任意两个都是互斥事件,则称事件彼此互斥。
12、如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和,即:如果事件彼此互斥,则有:对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。事件的对立事件记作对立事件一定是互斥事件,互斥事件未必是对立事件。必修4数学知识点第一章:三角函数任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合: .弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .3、弧长公式:.4、扇形面积公式:.任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:2、 设点为角终边上任意一点,那么:(设) ,3、 ,在四个象限的符号和三角函数线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 高中数学 必修 选修 知识点 归纳 总结
限制150内