风力发电系统控制模型的建立和仿真毕业论文.doc
《风力发电系统控制模型的建立和仿真毕业论文.doc》由会员分享,可在线阅读,更多相关《风力发电系统控制模型的建立和仿真毕业论文.doc(76页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 引 言随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的。风力发电起源于20世纪70年代,技术成熟于80年代,自90年代以来风力发电进入了大发展阶段。随着风力发电容量的不断增大,控制方式从基本单一的定桨距失速控制向全桨叶变距控
2、制和变速控制发展。前人在风轮机的空气动力学原理和能量转换原理的基础上,系统分析了定桨距风力发电机组、变桨距风力发电机组、变速风力发电机组的基本控制要求和控制策略,并对并网型风力发电机组的变桨距控制技术进行了一定的研究。变桨距风力发电机组的主要控制是在起动时对风轮转速的控制和并网后对输入功率的控制。通过变距控制可以根据风速来调整桨叶节距角,以满足发电机起动与系统输出功率稳定的双重要求。但由于对运行工况的认识不足,对变桨距控制系统的设计不能满足风力发电机组正常运行的要求,更达不到优化功率曲线和稳定功率输出的要求。本篇论文主要介绍了风力发电机组的基本控制要求和控制策略,在变桨距风力发电机组控制系统仿
3、真方面作了初步的探究和研究。通过控制系统保持了风力发电机组的安全可靠运行,并实现了稳定机组输出功率和优化功率曲线的控制功能。利用控制系统使风力发电系统在规定的时间内不出故障或少出故障,并在出故障之后能够以最快的速度修复系统使之恢复正常工作。本篇论文主要是通过PSCAD/EMTDC仿真软件,建立风力发电系统控制模型以及完整的风力发电样例系统模型,对自建的风力发电系统控制模型进行仿真分析,利用运行模块进行EMTDC模拟计算,验证风力发电系统控制模型的可用性,并且通过单曲线绘图对模拟结果进行分析,并利用多曲线绘图模块产生可直接用于研究报告的模拟结果图形。 本文在编写过程中,受到栗文义老师的大力支持和
4、精心指导,在此表示衷心的感谢。风力发电技术和PSCAD/EMTDC仿真等的相关知识对我们来讲都是平时很少接触和涉及的,而且,这些学科中的很多东西都是较为前沿的。由于本人的理论水平及实践经验所限、编写时间仓促,书中错误疏漏之处难免,敬请老师不咎指正。 第一章 风力发电系统的基本原理1.1 风力发电的基本原理1.1.1 风力发电的基本原理风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。依据目前的风车技术,大约3m/s的微风速度便可以开始发电。风力发电的原理说起来非常简单,最简单的风力发电机可由
5、叶片和发电机两部分构成如图1-1所示。空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动片叶旋转,如果将叶轮的转轴与发电机的转轴相连就会带动发电机发出电来。1.1.2 风力发电的特点(1)可再生的洁净能源风力发电是一种可再生的洁净能源,不消耗化石资源也不污染环境,这是火力发电所无法比拟的优点。(2)建设周期短一个十兆瓦级的风电场建设期不到一年。(3)装机规模灵活可根据资金情况决定一次装机规模,有一台资金就可以安装一台投产一台。(4)可靠性高把现代高科技应用于风力发电机组使其发电可靠性大大提高,中、大型风力发电机组可靠性从80年代的50%提高到了98%,高于火力发电且机组寿命可达20年。(
6、5)造价低 从国外建成的风电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。我国由于中大型风力发电机组全部从国外引进,造价和电价相对比火力发电高,但随着大中型风力发电机组实现国产化、产业化,在不久的将来风力发电的造价和电价都将低于火力发电。(6)运行维护简单现代中大型风力发电机的自动化水平很高,完全可以在无人职守的情况下正常工作,只需定期进行必要的维护,不存在火力发电的大修问题。(7)实际占地面积小发电机组与监控、变电等建筑仅占火电厂1%的土地,其余场地仍可供农、牧、渔使用。(8)发电方式多样化风力发电既可并网运行,也可以和其他能源如柴油发电、太阳能发电、水利发
7、电机组形成互补系统,还可以独立运行,因此对于解决边远地区的用电问题提供了现实可行性。(9)单机容量小由于风能密度低决定了单台风力发电机组容量不可能很大,与现在的火力发电机组和核电机组无法相比。另外风况是不稳定的,有时无风有时又有破坏性的大风,这都是风力发电必须解决的实际问题。1.2 风资源及风轮机概述1.2.1 风资源概述(1)风的起源风的形成乃是空气流动的结果。风就是水平运动的空气,空气运动主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。大气的流动也像水流一样,是从压力高处往压力低处流,太阳能正是形成大气压差的原因。由于地球自转轴与围绕太阳的公转轴之间存在665的夹角,因此对地球上不
8、同地点太阳照射角度是不同的,而且对同一地点一年中这个角度也是变化的。地球上某处所接受的太阳辐射能与该地点太阳照射角的正弦成正比。(2)风的参数风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。(3)风能的基本情况1风能的特点风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可
9、分散利用、另外不须能源运输、可和其它能源相互转换等。 风能资源的估算风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风功率为 (1-1)式中 为风能(w);为空气密度(kg/m);为风速(m/s)。由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况,一个地方风能潜力的多少要视该地常年平均风能密度的大小。因此需要求出在一段时间内的平均风能密度,这个值可以将风能密度公式对时间积分后平均来求得。在风速V的概率分布p(V)知道后,平均风能密度还可根据下式求得 (1-2)1.2.2 风轮机的理论4风轮机又称为风车,是一种将风能转换成机械能、
10、电能或热能的能量转换装置。风轮机的类型很多通常将其分为水平轴风轮机垂直轴风轮机和特殊风轮机三大类。但应用最广的还是前两种类型的风轮机。1.3 风力发电机的结构与组成1.3.1 风力发电机的分类5风力发电机组是将风能转化为电能的装置,按其容量分可分为:小型(10kw以下)、中型(10100kw)和大型(100kw以上)风力发电机组。按主轴与地面相对位置又可分为:水平轴风力发电机组和垂直轴风力发电机组。水平轴风力发电机是目前世界各国风力发电机最为成功的一种形式,主要优点是风轮可以架设到离地面较高的地方,从而减少了由于地面扰动对风轮动态特性的影响。它的主要机械部件都在机舱中,如主轴、齿轮箱、发电机、
11、液压系统及调向装置等。而生产垂直轴风力发电机的国家很少,主要原因是垂直轴风力发电机效率低,需启动设备,同时还有些技术问题尚待解决。在本文中以后不做特殊说明时所指的风力发电机组即为大中型的水平轴风力发电机组。1.3.2 水平轴风力发电机的结构大中型风力发电机组是由叶片、轮毂、主轴、增速齿轮箱、调向机构、发电机、塔架、控制系统及附属部件(机舱机座回转体制动器等)组成的。(1)机舱机舱包含着风力发电机的关键设备,包括齿轮箱、发电机等。图1.2 (2)风轮叶片安装在轮毂上称作风轮,它包括叶片、轮毂、主轴等。风轮是风力发电机接受风能的部件。叶片是风力发电机组最关键的部件,现代风力发电机上每个转子叶片的测
12、量长度大约为20米叶片数通常为2枚或3枚,大部分转子叶片用玻璃纤维强化塑料(GRP)制造。叶片可分为变浆距和定浆距两种叶片,其作用都是为了调速,当风力达到风力发电机组设计的额定风速时,在风轮上就要采取措施,以保证风力发电机的输出功率不会超过允许值。轮毂是连接叶片和主轴的零部件。轮毂一般由铸钢或钢板焊接而成,其中不允许有夹渣、砂眼、裂纹等缺陷,并按桨叶可承受的最大离心力载荷来设计。主轴也称低速轴,将转子轴心与齿轮箱连接在一起,由于承受的扭矩较大,其转速一般小于50r/min,一般由40Cr或其他高强度合金钢制成。(3)增速器增速器就是齿轮箱,是风力发电机组关键部件之一。由于风轮机工作在低转速下,
13、而发电机工作在高转速下,为实现匹配采用增速齿轮箱。使用齿轮箱可以将风电机转子上的较低转速、较高转矩转换为用于发电机上的较高转速、较低转矩。(4)联轴器增速器与发电机之间用联轴器连接,为了减少占地空间,往往联轴器与制动器设计在一起。(5)制动器制动器是使风力发电机停止转动的装置,也称刹车。(6)发电机发电机是风力发电机组中最关键的部件,是将风能最终转变成电能的设备。发电机的性能好坏直接影响整机效率和可靠性。大型风电机(100-150千瓦)通常产生690伏特的三相交流电。然后电流通过风电机旁的变压器(或在塔内),电压被提高至1-3万伏,这取决于当地电网的标准。风力发电机上常用的发电机有以下几种:
14、直流发电机,常用在微、小型风力发电机上。 永磁发电机,常用在小型风力发电机上。现在我国已经发明了交流电压440/240V的高效永磁交流发电机,可以做成多对极低转速的,特别适合风力发电机。 同步或异步交流发电机,它的电枢磁场与主磁场不同步旋转,其转速比同步转速略低,当并网时转速应提高。 (7)塔架塔架是支撑风力发电机的支架。塔架有型钢架结构的,有圆锥型钢管和钢筋混凝土的等三种形式,风电机塔载有机舱及转子。 (8)调速装置风速是变化的,风轮的转速也会随风速的变化而变化。为了使风轮运转所需要额定转速下的装置称为调速装置,调速装置只在额定风速以上时调速。目前世界各国所采用的调速装置主要有以下几种:可变
15、浆距的调速装置;定浆距叶尖失速控制的调速装置;离心飞球调速装置;空气动力调速装置;扭头、仰头调速装置。(9)调向(偏航)装置调向装置就是使风轮正常运转时一直使风轮对准风向的装置。借助电动机转动机舱以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。通常在风改变其方向时,风电机一次只会偏转几度。 (10)风力发电机微机控制系统11风力发电机的微机控制属于离散型控制,是将风向标、风速计、风轮转速、发电机电压、频率、电流、发电机温升、增速器温升、机舱振动、塔架振动、电缆过缠绕、电网电压、电流、频率等传感器的信号经A/D转换,输送给单片机再按设计程序给出各种指令实现自动启动
16、、自动调向、自动调速、自动并网、自动解列、运行中机组故障的自动停机、自动电缆解绕、过振动停机、过大风停机等的自动控制。自我故障诊断及微机终端故障输出需维修的故障,由维修人员维修后给微机以指令,微机再执行自动控制程序。风电场的机组群可以实现联网管理、互相通信,出现故障的风机会在微机总站的微机终端和显示器上读出、调出程序和修改程序等,使现代风力发电机真正实现了现场无人职守的自动控制。(11)电缆扭缆计数器电缆是用来将电流从风电机运载到塔下的重要装置。但是当风电机偶然沿一个方向偏转太长时间时,电缆将越来越扭曲,导致电缆扭断或出现其他故障。因此风力发电机配备有电缆扭曲计数器,用于提醒操作员应该将电缆解
17、开了。风力发电机还会配备有拉动开关在电缆扭曲太厉害时被激发,断开装置或刹车停机,然后解缆。1.4 风力发电机的基础理论1.4.1 贝茨(Betz)理论世界上第一个关于风轮机风轮叶片接受风能的比较完整的理论是1919年由A贝茨(Betz)建立的。贝茨理论的建立依据的假设条件是假定风轮是理想的,能全部接受风能并且没有轮毂,叶片是无限多,对气流没有任何阻力。而空气流是连续的,不可压缩的,叶片扫掠面上的气流是均匀的,气流速度的方向不论在叶片前或流经叶片后都是垂直叶片扫掠面的(或称为是平行风轮轴线的),满足以上条件的风轮称为“理想风轮”。如图1-3所示,我们分析一个放置在移动的空气中的“理想风轮”叶片上
18、所受到的力及移动的空气对风轮叶片所做的功。风吹到叶片上所做的功是将风的动能转化为叶片转动的机械能,则有 ,。如果假设空气是不可压缩的,由连续条件可得 (1-3)由流体力学可知气流的动能为 (1-4)设单位时间内气流流过载面积为s的气体的体积为V,则。如果以表示空气密度,该体积的空气质量,此时气体所具有的动能为 (1-5)的单位是kg/m3;V的单位是m3;的单位是m/s;T的单位是W。从风能公式可以看出风能的大小与气流密度和通过的面积成正比,与气流速度成正比,其中和随地理位置、海拔、地形等因素而变。风作用在叶片上的力由欧拉定理求得 (1-6)式中 空气当时的密度风轮所接受的功率为 (1-7)所
19、以经过风轮叶片的风的动能转化 (1-8)式中 空气质量 (1-9) (1-10)因此,风作用在风轮叶片上的力F和风轮输出的功率P分别为 (1-11) (1-12)风速是给定的,的大小取决于,是的函数,对微分求最大值得 (1-13)令其等于0,求解方程得 (1-14) (1-15)16/27=0593,称作贝茨功率系数 (1-16)而正是风速为的风能,故 (1-17)=0593,说明风吹在叶片上,叶片上所能获得的最大功率为风吹过叶片扫掠面积的风能的593。贝茨理论说明理想的风能对风轮叶片做功的最高效率是59.3。通常风轮机风轮叶片接受风能的效率达不到593,一般根据叶片的数量、叶片的翼形、功率等
20、情况取0.25-0.45。1.4.2 风力发电机特性系数贝茨理论提供了风能的基本理论,但在讨论风轮机的能量转换与控制时有几个特性系数具有特别重要的意义。(1)风能利用系数风轮机从自然风能中吸到能量的大小和程度可以用风能利用率系数表示 (1-18)(2)叶尖速比为了表示风轮在不同的风速中的状态用叶片的叶尖圆周速度与风速之比来衡量称为叶尖速比 (1-19)低速风轮取较小值;高速风轮取较大值。(3)转矩系数和推力系数为了便于把气流作用下的风轮机产生的转矩和推力进行比较常以为变量作成转矩和推力的变化曲线,因此转矩和推力也要无因次化。 (1-20) (1-21)1.4.3 异步发电机基本原理(1)异步发
21、电机基本原理发电机是风力发电机组中最关键的零部件,是将风能最终转变成电能的设备。发电机的性能好坏直接影响整机效率和可靠性。使用异步机作为风力发电机与电网并联的优点是:发电机结构简单成本低并网控制容易,缺点是要从电网吸收无功功率以提供自身的励磁。这一缺点可以通过在发电机端并联电容器来改善。由于风电场的特殊性,它的并网和解列的操作十分频繁,而且由于投资成本的限制以及管理、维修等方面的优点,现在大多数的大型风电场都采用异步发电机作为主力机型。本论文的研究对象中使用也是异步发电机,下面我们对异步机做以下的简单介绍。异步电机一般称感应电机即可作为发电机也可作为电动机。异步机作为电动机应用非常广泛异步机作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 风力发电系统控制模型的建立和仿真 毕业论文 风力 发电 系统 控制 模型 建立 仿真
限制150内