数值分析版试题及答案(共38页).docx
《数值分析版试题及答案(共38页).docx》由会员分享,可在线阅读,更多相关《数值分析版试题及答案(共38页).docx(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上例1、 已知函数表-112-304求的Lagrange二次插值多项式和Newton二次插值多项式。解:(1) 由题可知-112-304插值基函数分别为故所求二次拉格朗日插值多项式为(2)一阶均差、二阶均差分别为均差表为一阶二阶-1-3103/22445/6故所求Newton二次插值多项式为例2、 设,试求在0, 1上关于,的最佳平方逼近多项式。解:若,则,且,这样,有所以,法方程为,经过消元得再回代解该方程,得到,故,所求最佳平方逼近多项式为例3、 设,试求在0, 1上关于,的最佳平方逼近多项式。解:若,则,这样,有所以,法方程为解法方程,得到,故,所求最佳平方逼近多
2、项式为例4、 用的复合梯形和复合辛普森公式计算积分。解:(1)用的复合梯形公式由于,所以,有(2)用的复合辛普森公式由于,所以,有例5、 用列主元消去法求解下列线性方程组的解。解:先消元再回代,得到,所以,线性方程组的解为,例6、 用直接三角分解法求下列线性方程组的解。解:设则由的对应元素相等,有,因此,解,即,得,解,即,得,所以,线性方程组的解为,、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()、当时,Newtoncotes型求积公式会产生数值不稳定性。()3、形如的高斯(Gauss)型求积公式具有最高代数精确度的次数为。 ()、矩阵的范数。()5、设,则对任意实数,方程
3、组都是病态的。(用) ( )6、设,且有(单位阵),则有。( )7、区间上关于权函数的直交多项式是存在的,且唯一。( )1、() 2、() 3、( ) 4、() 5、( ) 6、( )7、() 8、( )一、 判断题(101)1、 若A是n阶非奇异矩阵,则线性方程组AXb一定可以使用高斯消元法求解。( )2、 解非线性方程f(x)=0的牛顿迭代法在单根x*附近是平方收敛的。 ( ? )3、 若A为n阶方阵,且其元素满足不等式则解线性方程组AXb的高斯塞德尔迭代法一定收敛。 ( )4、 样条插值一种分段插值。 ( ? )5、 如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。 (
4、? )6、 从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差及舍入误差。 ( ? )7、 解线性方程组的的平方根直接解法适用于任何线性方程组AXb。 ( )8、 迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步迭代计算的舍入误差。 ( )9、 数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断误差舍入误差。 ( ? )10、插值计算中避免外插是为了减少舍入误差。 ( )1. 用计算机求时,应按照从小到大的顺序相加。 ( )2. 为了减少误差,应将表达式改写为进行计算。 ( 对 )3. 用数值微分公式中求导数值时,步长越小计
5、算就越精确。 ( )4. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。 ( )复习试题一、填空题:1、,则A的LU分解为 。答案:2、已知,则用辛普生(辛卜生)公式计算求得,用三点式求得 。答案:2.367,0.253、,则过这三点的二次插值多项式中的系数为 ,拉格朗日插值多项式为 。答案:-1, 4、近似值关于真值有( 2 )位有效数字;5、设可微,求方程的牛顿迭代格式是( );答案6、对,差商( 1 ),( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x)=0在区间(a,b)内的根时,二分n
6、次后的误差限为( );10、已知f(1)2,f(2)3,f(4)5.9,则二次Newton插值多项式中x2系数为( 0.15 );11、 两点式高斯型求积公式( ),代数精度为( 5 );12、 解线性方程组Ax=b的高斯顺序消元法满足的充要条件为(A的各阶顺序主子式均不为零)。13、 为了使计算 的乘除法次数尽量地少,应将该表达式改写为 ,为了减少舍入误差,应将表达式改写为 。14、 用二分法求方程在区间0,1内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 15、 计算积分,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 ,用辛卜生
7、公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。16、 求解方程组的高斯塞德尔迭代格式为 ,该迭代格式的迭代矩阵的谱半径= 。17、 设,则 ,的二次牛顿插值多项式为 。18、 求积公式的代数精度以( 高斯型 )求积公式为最高,具有( )次代数精度。19、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求( 12 )。20、 设f (1)=1, f(2)=2,f (3)=0,用三点式求( 2.5 )。21、如果用二分法求方程在区间内的根精确到三位小数,需对分( 10 )次。23、是以整数点为节点的Lagrange插值基函
8、数,则( 1 ),( ),当时( )。26、改变函数 ()的形式,使计算结果较精确 。27、若用二分法求方程在区间1,2内的根,要求精确到第3位小数,则需要对分 10 次。29、若用复化梯形公式计算,要求误差不超过,利用余项公式估计,至少用 477个求积节点。30、写出求解方程组的Gauss-Seidel迭代公式 ,迭代矩阵为 ,此迭代法是否收敛 收敛 。31、设,则 9 。32、设矩阵的,则 。33、若,则差商 3 。34、数值积分公式的代数精度为 2 。35、 线性方程组的最小二乘解为 。36、设矩阵分解为,则 。二、单项选择题:1、 Jacobi迭代法解方程组的必要条件是( C )。 A
9、A的各阶顺序主子式不为零 B C D 2、设,则为( C ) A 2 B 5 C 7 D 33、三点的高斯求积公式的代数精度为( B )。 A 2 B5 C 3 D 44、求解线性方程组Ax=b的LU分解法中,A须满足的条件是( B )。A 对称阵 B 正定矩阵 C 任意阵 D 各阶顺序主子式均不为零 5、舍入误差是( A )产生的误差。A. 只取有限位数 B模型准确值与用数值方法求得的准确值C 观察与测量 D数学模型准确值与实际值 6、3.是的有( B )位有效数字的近似值。 A 6 B 5 C 4 D 7 7、用 1+x近似表示ex所产生的误差是( C )误差。A 模型 B 观测 C 截断
10、 D 舍入 8、解线性方程组的主元素消去法中选择主元的目的是( A )。A控制舍入误差 B 减小方法误差C防止计算时溢出 D 简化计算 9、用1+近似表示所产生的误差是( D )误差。 A 舍入 B 观测 C 模型 D 截断 10、-3247500是舍入得到的近似值,它有( C )位有效数字。 A 5 B 6 C 7 D 811、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x2的系数为( A )。 A 05 B 05 C 2 D -2 12、三点的高斯型求积公式的代数精度为( C )。 A 3 B 4 C 5 D 213、( D )的3位有效数字是0.236102。(
11、A) 0.103 (B) 2354.82102 (C) 235.418 (D) 235.5410114、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=?(x),则f(x)=0的根是( B )。(A) y=?(x)与x轴交点的横坐标 (B) y=x与y=?(x)交点的横坐标(C) y=x与x轴的交点的横坐标 (D) y=x与y=?(x)的交点15、用列主元消去法解线性方程组,第1次消元,选择主元为( A ) 。(A) 4 (B) 3 (C) 4 (D)916、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。(A) f(x,x0,x1,x2,xn)(x
12、x1)(xx2)(xxn1)(xxn),(B) (C) f(x,x0,x1,x2,xn)(xx0)(xx1)(xx2)(xxn1)(xxn),(D) 17、等距二点求导公式f?(x1) ?( A )。18、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列xnn=0,1,2,一定收敛到方程f(x)=0的根。19、为求方程x3x21=0在区间1.3,1.6内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是(A )。(A) (B)(C)(D)21、解方程组的简单迭代格式收敛的充要条件是( )。(1), (2) , (3) , (4) 22、在牛顿-柯特
13、斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。(1), (2), (3), (4),23、有下列数表x00.511.522.5f(x)-2-1.75-10.2524.25所确定的插值多项式的次数是( )。(1)二次; (2)三次; (3)四次; (4)五次25、取计算,下列方法中哪种最好?()(A); (B); (C) ; (D) 。27、由下列数表进行Newton插值,所确定的插值多项式的最高次数是()1.52.53.5-10.52.55.08.011.5(A); (B); (C) ; (D) 。28、形如的高斯(Gauss)型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 试题 答案 38
限制150内