高中物理带电粒子在磁场中的运动试题经典(共27页).doc
《高中物理带电粒子在磁场中的运动试题经典(共27页).doc》由会员分享,可在线阅读,更多相关《高中物理带电粒子在磁场中的运动试题经典(共27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上最新高中物理带电粒子在磁场中的运动试题经典一、带电粒子在磁场中的运动专项训练1如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 ABCD、ADBC,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B.一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 (90),粒子恰好做匀速直线运动并从 CD 射出若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d,带电粒子的质量为 m,带电量为 q,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的
2、时间;(3)匀强电场的电场强度大小【答案】(1)(2) (3) 【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强.【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R,画出运动轨迹如图所示,轨迹圆心为O 由几何关系可知: 洛伦兹力做向心力: 解得 (2)设带电粒子在矩形区域内作直线运动的位移为x,有粒子作匀速运动:x=v0t联立解得 (3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv0B解得【点睛】此题关键是能根据粒子
3、的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2如图所示,在xOy坐标系中,第、象限内无电场和磁场。第象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第象限内有沿x轴正向、电场强度大小为E的匀强磁场。一质量为m、电荷量为q的带正电粒子,从x轴上的P点以大小为v0的速度垂直射入电场,不计粒子重力和空气阻力,P、O两点间的距离为 。(1)求粒子进入磁场时的速度大小v以及进入磁场时到原点的距离x;(2)若粒子由第象限的磁场直接回到第象限的电场中,求磁场磁感应强度的大小需要满足的条件。【答案】(1); (2)【解析】【详解】(1)由动能定理
4、有: 解得:vv0设此时粒子的速度方向与y轴负方向夹角为,则有cos 解得:45根据,所以粒子进入磁场时位置到坐标原点的距离为PO两点距离的两倍,故(2)要使粒子由第象限的磁场直接回到第象限的电场中,其临界条件是粒子的轨迹与x轴相切,如图所示,由几何关系有:sR+Rsin又: 解得: 故3如图,区域I内有与水平方向成角的匀强电场,区域宽度为,区域内有正交的有界匀强磁场B和匀强电场,区域宽度为,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、电量大小为q的微粒在区域I左边界的P点,由静止释放后水平向右做直线运动,进入区域后做匀速圆周运动,从区域右边界上的Q点穿出,其速度方向改变了,重力加速度
5、为g,求:(1)区域I和区域内匀强电场的电场强度的大小. (2)区域内匀强磁场的磁感应强度B的大小. (3)微粒从P运动到Q的时间有多长.【答案】(1), (2) (3)【解析】【详解】(1)微粒在区域I内水平向右做直线运动,则在竖直方向上有:求得:微粒在区域II内做匀速圆周运动,则重力和电场力平衡,有:求得:(2)粒子进入磁场区域时满足:根据几何关系,分析可知:整理得:(3)微粒从P到Q的时间包括在区域I内的运动时间t1和在区域II内的运动时间t2,并满足:经整理得:4平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第
6、三象限内存在沿y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。(1)求粒子经过原点时的速度;(2)求磁感应强度B的所有可能取值(3)求粒子从出发直至到达P点经历时间的所有可能取值。【答案】(1)粒子经过原点时的速度大小为v0,方向:与x轴正方向夹45斜向下;(2)磁感应强度B的所有可能取值: n1、2、3;(3)粒子从出发直至到达P点经历时间的所有可能取值: k1、2、3或 n1、2、3。【解析】【详解】(1)粒子在电场中做类平抛运
7、动,水平方向:2av0t,竖直方向: ,解得:vyv0,tan1,45,粒子穿过O点时的速度:;(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得: ,粒子能过P点,由几何知识得:Lnrcos45 n1、2、3,解得: n1、2、3;(3)设粒子在第二象限运动时间为t1,则:t1;粒子在第四、第一象限内做圆周运动的周期:,粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧,若粒子经下方磁场直接到达P点,则粒子在磁场中的运动时间:t2T1,若粒子经过下方磁场与上方磁场到达P点,粒子在磁场中的运动时间:t2T1+T2,若粒子两次经过下方磁场一次经
8、过上方磁场到达P点:t22T1+T2,若粒子两次经过下方磁场、两次经过上方磁场到达P点:t22T1+2T2,则 k1、2、3或 n1、2、3粒子从出发到P点经过的时间:tt1+t2,解得: k1、2、3或 n1、2、3;5如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角=37;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为(53147),矩形
9、区域内有方向水平向里的匀强磁场质量m2=310-3 kg、电荷量q=3l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.510-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回已知P与ab间的动摩擦因数=0.5,A、B均可视为质点,Q的电荷量始终不变,忽略空气阻力,sin37=0.6,cos37=0.8,重力加速度大小g=10 m/s2求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小FN;(2)当=53时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh
10、内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的值【答案】(1) (2) (3),【解析】【详解】解:(1)设碰撞前后的速度分别为和,碰后的速度为从到,对,由动能定理得:解得:碰撞过程中,对,系统:由动量守恒定律:取向左为正方向,由题意, 解得:点:对,由牛顿第二定律得:解得: (2)设在点的速度为,在到点,由机械能守恒定律: 解得:进入磁场后:所受电场力 ,在磁场做匀速率圆周运动由牛顿第二定律得:Q刚好不从边穿出磁场,由几何关系: 解得: (3)当所加磁场, 要让从边穿出磁场且在磁场中运动的时间最长,则在磁场中运动轨迹对应的圆心
11、角最大,则当边或边与圆轨迹相切,轨迹如图所示:设最大圆心角为,由几何关系得:解得: 运动周期: 则在磁场中运动的最长时间:此时对应的和6(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为()的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)(1)求粒子到达时的速度大小和极板距离(2)为使粒子不与极板相撞,求磁感应强度的大小应满足
12、的条件。(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小【答案】(1)(2)(3) 【解析】(1)粒子由至的过程中,根据动能定理得 由式得 设粒子的加速度大小为,由牛顿第二定律得 由运动学公式得 联立式得 (2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,由牛顿第二定律得 要使粒子在磁场中运动时不与极板相撞,须满足 联立式得 (3)设粒子在两边界之间无场区向左匀速运动的过程用时为,有 联立式得 若粒子再次达到时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为,根据运动学公式得 联立式得 设
13、粒子在磁场中运动的时间为 联立式得 设粒子在匀强磁场中做匀速圆周运动的周期为T,由式结合运动学公式得 由题意得 联立式得 7如图所示,两块平行金属极板MN水平放置,板长L = 1 m间距d =m,两金属板间电压UMN= 1104V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上B、C、H也处于同一直线上AF两点距离为m现从平行金属极板MN左端沿中心轴线方向入射一个
14、重力不计的带电粒子,粒子质量m = 310-10kg,带电量q = +110-4C,初速度v0= 1105m/s(1)求带电粒子从电场中射出时的速度v的大小和方向(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件【答案】(1);垂直于AB方向出射(2)(3)【解析】试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t,加速度为a,则:解得:竖直方向的速度为:vyat105m/s射出时速度为:速度v与水平方向夹角为,故=30,即垂直于AB方向出射(2)带电粒子出电场时竖直方向的偏转
15、的位移,即粒子由P1点垂直AB射入磁场,由几何关系知在磁场ABC区域内做圆周运动的半径为由知:(3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最大,运动轨迹如图所示:由几何关系得:故半径又故所以B2应满足的条件为大于考点:带电粒子在匀强磁场中的运动.8电子扩束装置由电子加速器、偏转电场和偏转磁场组成偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO射入偏转电场当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中物理 带电 粒子 磁场 中的 运动 试题 经典 27
限制150内