《高二数学单调性》PPT课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《高二数学单调性》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《高二数学单调性》PPT课件.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复习引入复习引入:问题问题1 1:怎样利用函数单调性的定义怎样利用函数单调性的定义来讨论其在定义域的单调性来讨论其在定义域的单调性1 1一般地,对于给定区间上的函数一般地,对于给定区间上的函数f(x)f(x),如,如果对于属于这个区间的任意两个自变量的值果对于属于这个区间的任意两个自变量的值x x1 1,x x2 2,当,当x x1 1xx2 2时,时,(1)(1)若若f(xf(x1 1)f (x)f (x)f (x2 2) ),那么,那么f(x)f(x)在这个区间在这个区间上是上是减函数减函数. .(2)(2)作差作差f(xf(x1 1) )f(xf(x2 2) ),并,并变形变形. .2
2、2由定义证明函数的单调性的一般步骤:由定义证明函数的单调性的一般步骤:(1)(1)设设x x1 1、x x2 2是给定区间的任意两个是给定区间的任意两个值,且值,且x x1 1 x x2 2. .(3)(3)判断判断差的符号差的符号( (与比较与比较) ),从而,从而得函数的单调性得函数的单调性. .例例1:讨论函数讨论函数y=x24x3的单调性的单调性.解:取解:取x x1 1xx2 2RR, f(xf(x1 1) )f(xf(x2 2)=)=(x x1 12 24x4x1 13 3)()(x x2 22 24x4x2 23 3) = =(x x1 1+x+x2 2)(x)(x1 1x x2
3、 2)-4(x-4(x1 1x x2 2) = (x= (x1 1x x2 2)(x)(x1 1+x+x2 24 4) 则当则当x x1 1xx2 222时,时, x x1 1+x+x2 2404f(x)f(x2 2) ), 那么那么 y=f(x)y=f(x)单调递减。单调递减。 当当2x2x1 1x040, f(xf(x1 1)f(x)0f(x)0, , 注意注意: :如果在如果在恒有恒有f(f(x)=0,x)=0,则则f(xf(x) )为常数函数为常数函数. .如果如果f(f(x)0 x)0,-12x0,解得解得x0 x2x2,则则f(x)的单增区间为(的单增区间为(,0 0)和)和(2 2,). .再令再令6 6x2-12x0,-12x0,解得解得0 x2,0 x0, x0, f(x)=xlnx+x(lnx f(x)=xlnx+x(lnx)=lnx+1.)=lnx+1.当当lnx+10lnx+10时,解得时,解得x1/e.x1/e.则则f(x)f(x)的的单增区间是单增区间是(1/e,+).(1/e,+).当当lnx+10lnx+10时,解得时,解得0 x1/e.0 x0时时,解得解得 x0.则函数的单增区间为则函数的单增区间为(0,+). 当当ex-10时时,解得解得x0 (B)1a0 (B)1a1 (D) 0a1 (D) 0a1 )33,33(A AB B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二数学单调性 数学 调性 PPT 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内