半实物仿真技术发展计划综述.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《半实物仿真技术发展计划综述.doc》由会员分享,可在线阅读,更多相关《半实物仿真技术发展计划综述.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.-半实物仿真技术发展综述1、半实物仿真技术1.1半实物仿真系统定义半实物仿真,又称为硬件在回路中的仿真(Hardware in the Loop Simulation),是指在仿真实验系统的仿真回路中接入部分实物的实时仿真。实时性是进行半实物仿真的必要前提。半实物仿真同其它类型的仿真方法相比具有经济地实现更高真实度的可能性。从系统的观点来看,半实物仿真允许在系统中接入部分实物,意味着可以把部分实物放在系统中进行考察,从而使部件能在满足系统整体性能指标的环境中得到检验,因此半实物仿真是提高系统设计的可靠性和研制质量的必要手段。1.2 半实物仿真的先进性及其特点半实物仿真技术自20世纪60年代问
2、世直到目前美国研制航天飞机,始终盛行不衰。美国大多数国防项目承包商都有一个或多个半实物仿真实验室,这些实验室代表了当前世界先进水平。其先进性体现在:(1) 有高速高精度的仿真机;(2) 有先进完备的环境模拟设备。国内半实物仿真技术在导弹制导、火箭控制、卫星姿态控制等应用研究方面也达到了较高水平。半实物仿真的特点是:(3) 在回路中接入实物,必须实时运行,即仿真模型的时间标尺和自然时间标尺相同。(4) 需要解决控制器与仿真计算机之间的接口问题。(5) 半实物仿真的实验结果比数学仿真更接近实际1.3半实物仿真系统的基本组成与原理半实物仿真系统属于实时仿真系统。它是一种硬件在环实时技术,把实物利用计
3、算机接口嵌入到软件环境中去,并要求系统的软件和硬件都要实时运行,从而模拟整个系统的运行状态,如图2所示。实时系统由以下几部分组成。(1)仿真计算机仿真计算机是实时仿真系统的核心部分,它运行实体对象和仿真环境的数学模型和程序。一般来说,采用层次化、模块化的建模法,将模块化程序划分为不同的速率块,在仿真计算机中按速率块实时调度运行。对于复杂的大型仿真系统,可用多台计算机联网实时运行。(2)物理效应设备物理效应设备的作用是模拟复现真实世界的物理环境,形成仿真环境或称为虚拟环境。物理效应设备实现的技术途径多种多样,方案之一是采用伺服控制回路,通过伺服控制回路控制形成相应的物理量,方案之二是在已储存好的
4、数据库中搜索相应的数据,转化为相应的物理量。(3)接口设备仿真计算机输出的驱动信号经接口变换后驱动相应的物理效应设备。接口设备同时将操作人员或实物系统的控制输入信号馈入仿真计算机。半实物仿真系统原理框图如图1所示。在仿真计算机中通过对动力学系统和环境的数学模型解算,获得系统和环境的各种参数。对半实物仿真系统,这些参数通过物理效应设备生成传感器所需要的测量环境,从而构成完整的闭环仿真系统。物理效应设备是实现仿真系统所需要的中间环节,它的动态特性、静态特性和时间延迟都将对仿真系统的置信度和精度产生影响,应该有严格的相应技术指标要求。图1 半实物仿真系统原理框图半实物仿真系统是虚、实结合的系统,它具
5、有以下特点:(1)建立仿真模型。任何仿真模型的实现,都必须建立被仿真对象实体的数学模型。除建立被仿真实体的数学模型,还应建立环境模型,例如飞行仿真系统中大气环境(气压、气温、阵风、扰动气流等)模型、地理环境(地形、地貌)模型等。(2)实物的接入与仿真环境的生成。实时仿真系统一般都接入实物系统,例如将发动机仿真系统进行含实物仿真试验。各种物理效应设备将模拟生成实物系统所需要的物理环境,通过物理效应设备和接口使仿真计算机和接入的实物系统构成一个完整的含实物仿真系统。(3)系统仿真试验。系统仿真试验具有良好的可控性、无破坏性,可多次重复,经济、安全、不受气象条件和场地环境的限制。(4)系统仿真的应用
6、。系统仿真技术可广泛应用于国防、能源、水利、工业等工程领域和非工程领域,也可广泛应用于产品研制的方案论证、设计分析、生产制造、试验评估、人员训练的全过程。(5)系统仿真的实时性。仿真计算机从“并行”计算的模拟计算机发展到“串行”计算的数字计算机,其中突出的技术关键是如何保证仿真系统的运行实时性。实时性体现在循环迭代计算的帧周期上,应根据仿真系统内的信息变化速率快慢选定帧周期。联网仿真的网络延迟和物理效应设备的时间延迟都将影响仿真系统的实时性。1.4半实物仿真工作流程用户在进行半实物仿真时,一般要经历以下“瀑布式”流程,如图2所示,对实际系统建模,进行纯数学仿真(即数学仿真模型),对模型进行修改
7、,设计定型,将模型中部分数学化的模型用实物代替作实物实时仿真,再修改模型进行仿真,最后确定模型。完成了数学模型的建立和仿真验证后,用户可以建立半实物实时仿真系统。在Matlab/Simulink系统平台上建立半实物实时仿真系统十分简便,即将原来的用数学方法表达的输入、输出信号模型用实际的I/O板替换,然后对硬件目标进行描述,生成实时代码,将实时代码下载到本地仿真平台上,最后运行模型、进行仿真数据监视并可以在线修改仿真模型的数学部分。图2 半实物仿真流程2、主要半实物仿真系统2.1 dSPACE半实物仿真平台在半实物仿真系统中,由于实物的引入,需要模拟这些部件的真实工作环境和激励信号,还需要以一
8、些专用的物理仿真模型加以实现。半实物仿真作为替代真实环境或设备的一种典型方法,既提高了仿真的逼真性,又解决了以前存在于系统中的许多复杂建模难题,因此半实物仿真成了主要的发展方向。另外,在开发的初期阶段,需要快速地建立控制对象原型及控制器模型,并对整个控制系统进行多次离线的及在线的试验来验证控制系统软、硬件方案的可行性,这个过程称之为快速控制(RCP)。dSPACE 实时仿真系统为半实物仿真和RCP 的应用提供了一个协调统一的一体化解决途径。dSPACE 是基于MATLAB/Simulink 的控制系统开发及测试的工作平台,实现了和MATLAB/Simulink的无缝连接。dSPACE实时系统拥
9、有高速计算能力的硬件系统,还拥有方便易用的实现代码生成/下载和试验/调试的软件环境。2.1.1 dSPACE 简介dSPACE 实时仿真系统是由德国dSPACE 公司开发的一套基于MATLAB/Simulink 的控制系统在实时环境下的开发及测试工作平台,实现了和MATLAB/Simulink 的无缝连接。dSPACE 实时系统由两大部分组成,一是硬件系统,二是软件环境。其中硬件系统的主要特点是具有高速计算能力,包括处理器和I/O 接口等;软件环境可以方便地实现代码生成/下载和试验调试等工作。dSPACE 具有强大的功能,可以很好地完成控制算法的设计、测试和实现,并为这一套并行工程提供了一个良
10、好的环境。dSPACE 的开发思路是将系统或产品开发诸功能与过程的集成和一体化,即从一个产品的概念设计到数学分析和仿真,从实时仿真实验到实验结果的监控和调节都可以集成到一套平台中来完成。dSPACE 的软件环境主要由两大部分组成,一部分是实时代码的生成和下载软件RTI(Real-Time Interface),它是连接dSPACE实时系统与MATLAB/Simulink纽带,通过对RTW(Real-Time Workshop)进行扩展,可以实现从Simulink模型到dSPACE 实时硬件代码的自动下载。另一部分为测试软件,其中包含了综合实验与测试环境(软件)ControlDesk、自动试验及
11、参数调整软件MLIB/MTRACE、PC 与实时处理器通信软件CLIB以及实时动画软件RealMotion等。dSPACE实时仿真系统的结构如图3所示。图3 dSPACE半实物仿真系统框图dSPACE实时仿真系统具有许多其它仿真系统具有的无法比拟的优点: 组合性强。使用标准组件系统,可以对系统进行多种组合。 过渡性好,易于掌握使用。与MATLAB/Simulink无缝连接,方便地从非实时分析设计过渡到实时分析设计。 快速性好。用户可以在几分钟内完成模型/参数的修改、代码的生成及下载等工作,大大节省了时间和费用。 实时性好。一旦代码下载到实时系统,将独立运行,不会产生对试验过程的中断。 可靠性高
12、。dSPACE 系统软硬件均为精心设计、制造和调试的,无兼容性问题,可以信赖。 灵活性强。允许用户在单板/多板系统、单处理器/多处理器系统、自动生成代码/手工编制代码进行选择,适应各方面的应用需求。 基于PC 机、WINDOWS 操作系统,其代码生成及下载软件、试验工具软件都基于WINDOWS 操作系统,硬件接口采用标准总线,方便掌握使用。2.1.2 dSPACE 软件环境介绍2.1.2.1 代码的生成及下载软件描述控制系统的C代码可以由Simulink方框图自动生成并下载到实时系统硬件中,这项工作主要由MATLAB/RTW与dSPACE系统中的RTI 来完成。RTI 的使用方法就是用图形方式
13、从dSPACE的RTI库中选定相应的I/O模型,将其拖放到用Simulink搭建的系统模型方框图中,并指定I/O参数以完成对它的选定,选定后,只要用鼠标点击一下对话框中的Build命令,RTI就会自动编译、下载并启动实时模型。另外,RTI还根据信号和参数产生一个变量文件,可以用dSPACE的试验工具软件如ControlDesk来进行变量的访问。当仿真系统比较复杂时,就需要RTI-MP的帮助以完成多处理器系统的设计并建立多处理器网络结构。2.1.2.2 测试软件dSPACE 提供的测试软件主要有:ControlDesk 综合实验环境、MLIB/MTRACE 实现自动试验及参数调整软件。(1) C
14、ontrolDeskControlDesk 是dSPACE 公司开发的新一代综合试验和测试软件工具,提供对试验过程的综合管理,它可实现的功能包括: 对实时硬件的可视化管理 用户虚拟仪表的建立 变量的可视化管理 参数的可视化管理 试验过程的自动化(2) MLIB/MTRACE利用 MLIB和MTRACE,可以大大增强dSPACE实时系统的自动试验能力。使用这两个库可以在不中断试验的情况下从MATLAB直接访问dSPACE板上运行的应用程序中的变量。甚至无需知道变量的地址,有变量名就足够了。这样就可以利用MATLAB的数字计算及图形能力进行顺序自动测试、数据记录和控制参数的优化。MLIB和MTRA
15、CE联合使用可组成一个完美的整体。有MATLAB强大的计算能力做支持,可以自动执行所能想到的任何试验。比如控制器的优化:用MTRACE记录数据,然后将数据传送给MATLAB,MATLAB自动计算出新的控制器参数,并通过MLIB送回处理器板或控制板。总之,dSPACE是进行基于Simulink模型半实物仿真和实时控制的首选工具,利用以上软件工具可以完成从系统建模、分析、离线仿真到实时仿真的全过程如图4所示。图4 利用dSPACE实时仿真过程2.1.3 利用dSPACE进行控制系统的开发在进行控制系统的开发时,常常需要面临许多难以解决的问题,而开发的时间却要求愈来愈紧迫。由于制造过程中存在误差、老
16、化及元器件装配等问题,对控制系统提出了相当高的可靠性要求;对控制性能越来越高的要求使控制算法也越来越复杂;并行工程要求设计、实现、测试及生产准备同时进行;有时控制对象在开发过程中也在不断发生变化。由上述过程可以看出,传统的开发方法至少存在三个较大的问题:1、在对控制规律的控制特性或控制效果还没有一点把握的情况下,硬件电路已经制造了,这时还不知道设计方案能在多大程度上满足要求,或者根本不能满足要求。2、由于采用手工编程,会产生代码不可靠的问题,这样在测试过程中对出现的问题,很难确定是控制方案不理想还是软件代码有错误。更重要的是手工编程将会占用大量的时间,导致虽然有了控制方案,却要等待很长的时间才
17、能对其进行验证和测试,从而在不知道方案是否可行的情况下就浪费了大量的时间、人力和物力,给开发带来了不必要的开支和经济损失。3、即使软件不存在问题,如果在测试过程中发现控制方案不理想,需要进行修改,则新的一轮工作又将开始。大量的时间又将耗费在软件的修改和调试上。另外,由于涉及的部门和人员过多,再加上管理不善造成的种种不协调,导致开发周期长而又长。而用 dSPACE提倡的基于模型面向应用的现代化开发方法则要有效的多。现代开发方法的最重要的特征就是计算机辅助控制系统设计(CACSD:Computer-Aided Control System Design)。将计算机支持工具贯穿于控制系统开发测试的全
18、过程。CACSD不仅仅是进行控制方案的设计和离线仿真,还包括实时RCP、产品代码的生成和硬件在回路测试,这是一个完整的流线型控制系统开发步驟。dSPACE为流线型控制系统的开发提供了一套CACSD的工具包CDP(Control Development Package)。CDP主要基于下列工具: MATLAB:用于进行模型的分析、设计、优化和数据的离线处理 Simulink:用来进行基于方框图的控制系统离线仿真 Real-Time-Workshop:用来从方框图模型直接生成C代码。 dSPACE 公司的RTI:用来使代码可以在单处理器目标系统中运行。 dSPACE 系列软件工具:用来对闭环试验进
19、行交互操作。总之,利用CDP可以完成从系统建模、分析、离线仿真到实时仿真的全过程。对大多数用户而言,一般有以下几个步骤:步骤 1:用线性或非线性方程建立控制对象的理论模型。该方程能用MATLAB的m-file格式或Simulink方框图方式表示,以便于用MATLAB/Simulink进行动态分析。步骤 2:用MATLAB工具箱设计原始控制方案。步骤 3:用Simulink对控制方案进行离线仿真。步骤 4:在Simulink框图中,从RTI库用拖放指令指定实时测试所需的I/O、A/D、D/A,并对其参数进行设置。步骤 5:选择RTW Build,自动完成目标DSP系统的实时C代码的生成、编译、连
20、接和下载。即使是复杂的大型控制系统,该过程也只需几分钟左右。步骤 6:用ControlDesk试验工具软件包与实时控制器进行交互操作,如调整控制参数,显示控制系统的状态、跟踪进程响应曲线等。步骤 7:返回步骤1。总之,利用dSPACE,可以把精力全神贯注于控制方案的构思,可以大大缩短开发周期。2.2 RT-LAB半实物仿真平台RT-LAB实时仿真器是加拿大Opal-RT Technologies公司推出的基于模型的工程设计与测试应用平台。应用此仿真器,工程师可以在一个平台上实现工程项目的设计、实时仿真、快速原型与硬件在回路测试的全套解决方案。RT-LAB的应用,为基于模型的设计带来了不同的方法
21、。由于其开放性,RT-LAB可以灵活的应用于动力学系统仿真与控制场合;其优秀的可扩展性能为所有的应用提供了一个低风险的起点,使得用户可以根据项目的需要随时随地对系统运算能力进行验证及扩展不论是为了加快仿真速度或者是为满足应用的实时硬件在回路测试的需要。2.2.1 RT-LAB特性RT-LAB的主要特性是分布式运算。将复杂的模型分布到若干处理器上并行运算是RT-LAB的独创,通常可以用普通的COTS硬件作为模型运行的载体目标机,这样做除了扩展运算能力外,还意味着用户可以在较短的时间内灵活的组建符合自己需要的实时仿真平台,并能结合项目的需要扩展。RT-LAB的分布式特点表现为两个方面:分布式的目标
22、机(最多可达63个)和分布式的主机平台。 分布式的目标机运行一运算负荷的分配RT-LAB提供的工具可以方便的将系统模型分割为若干个子系统模型,并分配到若干个目标机上并行运算。通过这种方式,当用户的模型在单个目标机上不能实时运行时,RT-LAB可以将运算负荷分配到多个目标机上,这样就有足够的运算能力满足实时性要求。在模型运行时,RT-LAB支持多个目标机之间的数据通讯。可以用TCPIP、IEEE-1394、共享内存,或者将这些技术结合起来实现目标机间的实时数据通讯,用户也可以在主机平台上与目标机上的仿真模型通过TCP/IP或者IEEEl394进行实时在线交互。 分布式的主机平台从子系统设计到完整
23、系统仿真的虚拟集成由于将仿真模型分布到目标机上并行运算,因此,RT-LAB也是大型仿真项目的团队开发平台,每个开发小组专注于自己的子系统模型的设计,并在自己的仿真目标机进行实时测试,然后,各个小组的模型可以组合成完整系统的模型。每个子系统之间的数据交换可以通过目标机之间的实时通讯网络进行。 连接性RT-LAB的应用程序接口(API)功能全面,并有详细说明文档。对于熟练的编程人员,它还允许开发者在编写系统级仿真管理软件的时候能够迅速的将自己的应用程序与实时仿真系统整合。同时,RT-LAB也提供了相应的工具来简化实时仿真系统与运行在主机上的面向非编程人员的应用程序的连接。如:RT-LAB的LabV
24、IEW API工具能建立实时模型和LabVIEW的直接联系,不需要编写任何代码;允许用户使用Python(RT-LAB自带插件)语言来配置模型以及自动化运行测试步骤。同时,模型可以运行在不同的RT-LAB目标机处理器上,且不需要重新设置或编译模型;可以使用Test Stand的测试自动化;从Simulink程序框图中调用Python的脚本函数;在主机和目标机之间的自动文件传输。2.2.2 Internet上的远程操作由于RT-LAB的主机与目标机系统之间是通过DUP/IP协议来进行通讯,可以通过Internet来与仿真目标机进行通讯,这使得RT-LAB仿真实验室可以与外界共享资源协同开发。此外
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实物 什物 仿真技术 发展计划 综述
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内