函数的单调性与求函数的最值.doc
《函数的单调性与求函数的最值.doc》由会员分享,可在线阅读,更多相关《函数的单调性与求函数的最值.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、函数的单调性与最值复习:按照列表、描点、连线等步骤画出函数的图像. 图像在轴的右侧部分是上升的,当在区间0,+)上取值时,随着的增大,相应的值也随着增大,如果取0,+),得到,那么当时,有.这时就说函数=在0,+ )上是增函数. 图像在轴的左侧部分是下降的,当在区间0,+)上取值时,随着的增大,相应的值反而随着减小,如果取0,+),得到,那么当时,有。这时就说函数=在0,+ )上是减函数. 1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,都有f(x1)f(x2),那么就说函数f(x)
2、在区间D上是增函数当x1x2时,都有f(x1)f(x2),那么就说函数f (x )在区间D上是减函数图象描述在单调区间上增函数的图象是上升的 在单调区间上减函数的图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,那么称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间注意:(1)函数的单调性也叫函数的增减性;(2)注意区间上所取两点x1,x2的任意性;(3)函数的单调性是对某个区间而言的,它是一个局部概念。(4)若函数在其定义内的两个区间、上都是单调增(减)函数,一般不能认简单地认为在区间上是增(减)函数. 例如在区间上是减函数,在区间上也是减函
3、数,但不能说它在定义域上是减函数.(3)用定义法判断函数的单调性:定义域取值;任取x1,x2D,且x1x2;作差;作差f(x1)f(x2);变形;通常是因式分解和配方;定符号;即判断差f(x1)f(x2)的正负下结论指出函数f(x)在给定的区间D上的单调性例1 证明函数在(0,+)上是减函数.证明:设,是(0,+)上的任意两个实数,且0,又由0 ,于是0,即 在(0,+ )上是减函数.练习:讨论函数在-1,0的单调性.在-1,0上任取x1,x2且x1x2则,从而-= = 另外,恒有-1x1x20 则 x1+x20 则- 在-1,0上f(x)为增函数2.基本函数的单调性例:讨论函数在(-2,2)
4、内的单调性.解:,对称轴 若,则在(-2,2)内是增函数;若则在(-2,a)内是减函数,在a,2内是增函数若,则在(-2,2)内是减函数.3.判断函数的单调性的常见结论设任意x1,x2a,b,且x1x2,那么 f(x)在a,b上是增函数;f(x)在a,b上是减函数设任意x1,x2a,b,那么 f(x)在a,b上是增函数;f(x)在a,b上是减函数 (x1x2)f(x1)f(x2)0f(x)在a,b上是增函数;(x1x2)f(x1)f(x2)0f(x)在a,b上是减函数【梳理总结】 (1)函数与的单调性相反;(2)当函数恒为正或恒有负时,与函数的单调性相反;(3)函数与函数(为常数)的单调性相同
5、;(4)当(为常数)时,与的单调性相同;当(为常数)时,与的单调性相反;(5)函数、都是增(减)函数,则仍是增(减)函数;(6)若且与都是增(减)函数,则也是增(减)函数;若且与都是增(减)函数,则也是减(增)函数;(7)设,若在定义域上是增函数,则、都是增函数.例:求函数y的单调区间.4. 关于分段函数的单调性(1)若函数,在区间上是增函数, 在区间上是增函数,则在区间上不一定是增函数,若使得在区间上一定是增函数,需补充条件: (2)若函数,在区间上是减函数, 在区间上是减函数,则在区间上不一定是减函数,若使得在区间上一定是减函数,需补充条件: 例:已知函数若对任意x1,x2,都有成立,则实
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性
限制150内