三角函数图像变换.doc
《三角函数图像变换.doc》由会员分享,可在线阅读,更多相关《三角函数图像变换.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角函数的图像变换1结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确对函数图象的影响。2能由正弦曲线通过平移、伸缩变换得到y=Asin 的图象。3教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 1、函数图象的左右平移变换 如在同一坐标系下,作出函数和的简图,并指出它们与图象之间的关系。 解析:函数的周期为,我们来作这个函数在长度为一个周期的闭区间上的简图。 设,那么, 当Z取0、时,x取。所对应的五点是函数,图象上起关键作用的点。 列表: 类似地,对于函数,可列出下表: 描点作图(如下) 利用这类函数的周期
2、性,可把所得到的简图向左、右扩展,得出,及,的简图(图略)。 由图可以看出,的图象可以看作是把的图象上所有的点向左平行移动个单位而得到的,的图象可以看作是把的图象上所有的点向右平行移动个单位得到的。 注意:一般地,函数的图象,可以看作是把的图象上所有的点向左(当时)或向右(当时)平行移动个单位而得到的。 推广到一般有: 将函数的图象沿x轴方向平移个单位后得到函数的图象。当a0时向左平移,当a0且A1)的图象,可以看作是把的图象上所有点的纵坐标伸长(当A1时)或缩短(当0A0且A1)的图象,可以看作是把函数图象上的点的纵坐标伸长(当A1)或缩短(当0A0,)表示一个振动量时,A就表示这个量振动时
3、离开平衡位置的最大距离,通常把它叫做这个振动的振幅;往复振动一次所需要的时间,它叫做振动的周期;单位时间内往复振动的次数,它叫做振动的频率;叫做相位,叫做初相(即当x0时的相位)。 例1. 用两种方法将函数的图象变换为函数的图象。 分析1: 解法1: 分析2: 解法2: 点评:在解法1中,先伸缩,后平移;在解法2中,先平移,后伸缩,表面上看来,两种变换方法中的平移是不同的(即和),但由于平移时平移的对象已有所变化,所以得到的结果是一致的。练习:应选Dx轴交点中在原点右边最接近原点的交点,而在原点左边与x轴交点中最的图象选D 例2. 用五点法作出函数的图象,并指出函数的单调区间。 分析:按五点作
4、图法的要求找出五个点来,然后作图。 解析:(1)列表 列表时取值为0、,再求出相应的x值和y值。(2)描点 (3)用平滑的曲线顺次连结各点所得图象如图所示: 利用这类函数的周期性,我们可以把上面所得到的简图向左、右扩展,得到,的简图(图略)。 可见在一个周期内,函数在,上递减,又因函数的周期为,所以函数的递减区间为。同理,增区间为。 点评:五点法作图,要抓住要害,即抓住五个关键点,使函数式中的取0、,然后求出相应的x,y值。 例3. 如图是函数的图象,确定A、的值。 解析:显然A2 解法1:由图知当时,y0 故有, 所求函数解析式为 解法2:由图象可知将的图象向左移 即得,即 点评:求函数的解
5、析式难点在于确定初相,一般可利用图象变换例:4试述如何由y=sin(2x+)的图象得到y=sinx的图象。解析:y=sin(2x+)另法答案:(1)先将y=sin(2x+)的图象向右平移个单位,得y=sin2x的图象;(2)再将y=sin2x上各点的横坐标扩大为原来的2倍(纵坐标不变),得y=sinx的图象;(3)再将y=sinx图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到y=sinx的图象。例5: 函数f(x)=Asin(x+j)的图象如图2-15,试依图指出(1)f(x)的最小正周期;(2)使f(x)=0的x的取值集合;(3)使f(x)0的x的取值集合;(4)f(x)的单调递
6、增区间和递减区间;(5)求使f(x)取最小值的x的集合;(6)图象的对称轴方程;(7)图象的对称中心解析: 这是一道依图象读出相应函数性质的典型例题,本身就是数形结合思想的体现,它根据f(x)=Asin(x+j)的图象与函数y=sinx的图象的关系得出注:得出函数f(x)的最小正周期之后,研究f(x)的其他性质,总是先在包含锐角在内的一个周期中研究,再延伸到整个定义域中注:实际上f(x)图象的对称轴方程为x=x0,而其中x0使f(x0)=1或f(x0)=-1注:f(x)的图象的对称中心为(x0,0),其中x0使f(x0)=0【说明】 这种依图读性的问题是提高数形结合能力的重要训练题,其中有两点
7、要注意反思:周期性在研究中的化简作用,三角函数的“多对一”性练习:1(13分)已知函数f(x)Asin(x) (A0,0,|)的部分图象如图所示(1)求函数f(x)的解析式;(2)如何由函数y2sin x的图象通过适当的变换得到函数f(x)的图象, 试写出变换过程解(1)由图象知A2.f(x)的最小正周期T4,故2.将点代入f(x)的解析式,得sin1.又|0,0,|,xR)的图象的一部分如图所示(1)求函数f(x)的解析式;(2)当x时,求函数yf(x)f(x2)的最大值与最小值 及相应的x的值解(1)由图象知A2,T8,T8,.又图象过点(1,0),2sin0.|0,0,|)的一段图象如图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 图像 图象 变换
限制150内