一元二次方程总练习情况总结复习资料计划重要资料库梳理.doc
《一元二次方程总练习情况总结复习资料计划重要资料库梳理.doc》由会员分享,可在线阅读,更多相关《一元二次方程总练习情况总结复习资料计划重要资料库梳理.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程一般形式:ax2bx+c=0(a0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b0)的方程两边直接开平方而转化为两个一元一次方程的方法。 X+a= =-a+ =-a-2.配方法:用配方法解一元二次方程:ax2bx+c=0(k0)的一般步骤是:化为一般形式;移项,将常数项移到方程的右边;化二次项系数为1,即方程两边同除以二次项系数;配方,即方程两边都加上一次项系数的一
2、半的平方;化原方程为(x+a)2=b的形式;如果b0就可以用两边开平方来求出方程的解;如果b0,则原方程无解3.公式法:公式法是用求根公式求出一元二次方程的解的方法它是通过配方推导出来的一元二次方程的求根公式是(b24ac0)。步骤:把方程转化为一般形式;确定a,b,c的值;求出b24ac的值,当b24ac0时代入求根公式。4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法理论根据:若ab=0,则a=0或b=0。步骤是:将方程右边化为0;将方程左边分解为两个一次因式的乘积;令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解 因式分解
3、的方法:提公因式、公式法、十字相乘法。5一元二次方程的注意事项: 在一元二次方程的一般形式中要注意,强调a0因当a=0时,不含有二次项,即不是一元二次方程 应用求根公式解一元二次方程时应注意:先化方程为一般形式再确定a,b,c的值;若b24ac0,则方程无解 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式如2(x4) =3(x4)中,不能随便约去x4。 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法因式分解法公式法6一元二次方程解的情况b24ac0方程有两个不相等的实数根;b24ac=0方程有两个相等的实数根;b2
4、4ac0方程没有实数根。解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b24ac解题。主要用于求方程中未知系数的值或取值范围。考点3:根与系数的关系:韦达定理 对于方程ax2bx+c=0(a0)来说,x1 +x2 =,x1x2= 。利用韦达定理可以求一些代数式的值(式子变形),如。解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。二、经典考题剖析: 【考题11】下列方程是关于x的一元二次方程的是( ) Aax2bx+c=0 B. k2 x5k+6=0 C.3x22x+=0 D.( k23) x22x+1=0【考题
5、12】解方程:x22x3=0【考题13】(2009、青岛,6分)已知方程5x2+kx10=0一个根是5,求它的另一个根及k的值三、针对性训练: 1、下列方程中,关于x的一元二次方程是( ) 2、若 A B、2 C、2 D、3、用配方法解下列方程时,配方有错误的是( )A.x2-2x-99=0化为(x-1)2=100B.x2+8x+9=0化为(x+4)2=25C.2t2-7t-4=0化为 D.3y2-4y-2=0化为5、若x1 ,x2 是方程x2 5x+6=0的两个根,则x1 +x2的值是( ) A .1 B.5 C. 5 D.66、若x1 ,x2 是方程x2 3x1=0的两个根,则的值为( )
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 练习 情况 总结 复习资料 计划 规划 重要 首要 资料库 梳理
限制150内