向量自回归模型讲义.doc
《向量自回归模型讲义.doc》由会员分享,可在线阅读,更多相关《向量自回归模型讲义.doc(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.-第8章 VAR模型与协整1980年Sims提出向量自回归模型(vector autoregressive model)。这种模型采用多方程联立的形式,它不以经济理论为基础,在模型的每一个方程中,内生变量对模型的全部内生变量的滞后值进行回归,从而估计全部内生变量的动态关系。8.1向量自回归(VAR)模型定义8.1.1 模型定义VAR模型是自回归模型的联立形式,所以称向量自回归模型。假设y1t,y2t之间存在关系,如果分别建立两个自回归模型y1, t = f (y1, t-1, y1, t-2, )y2, t = f (y2, t-1, y2, t-2, )则无法捕捉两个变量之间的关系。如果采
2、用联立的形式,就可以建立起两个变量之间的关系。VAR模型的结构与两个参数有关。一个是所含变量个数N,一个是最大滞后阶数k。以两个变量y1t,y2t滞后1期的VAR模型为例, y1, t = c1 + p11.1 y1, t-1 + p12.1 y2, t-1 + u1 t y2, t = c2 + p21.1 y1, t-1 + p22.1 y2, t-1 + u2 t (8.1)其中u1 t, u2 t IID (0, s 2), Cov(u1 t, u2 t) = 0。写成矩阵形式是, =+ (8.2)设, Yt =, c =, P1 =, ut =,则, Yt = c + P1 Yt-1
3、 + ut (8.3)那么,含有N个变量滞后k期的VAR模型表示如下: Yt = c + P1 Yt-1 + P2 Yt-2 + + Pk Yt-k + ut, ut IID (0, W) (8.4)其中, Yt = (y1, t y2, t yN, t) c = (c1 c2 cN) Pj =, j = 1, 2, , k ut = (u1 t u2,t uN t),Yt为N1阶时间序列列向量。 C为N1阶常数项列向量。P1, , Pk 均为NN阶参数矩阵,ut IID (0, W) 是N1阶随机误差列向量,其中每一个元素都是非自相关的,但这些元素,即不同方程对应的随机误差项之间可能存在相关
4、。因VAR模型中每个方程的右侧只含有内生变量的滞后项,他们与ut是渐近不相关的,所以可以用OLS法依次估计每一个方程,得到的参数估计量都具有一致性。估计VAR的EViews 4.1操作:打开工作文件,点击Quick键, 选Estimate VAR功能。作相应选项后,即可得到VAR的表格式输出方式。在VAR模型估计结果窗口点击View 选 representation功能可得到VAR的代数式输出结果。8.1.2 VAR模型的特点是:(1)不以严格的经济理论为依据。在建模过程中只需明确两件事:共有哪些变量是相互有关系的,把有关系的变量包括在VAR模型中;确定滞后期k。使模型能反映出变量间相互影响的
5、绝大部分。(2)VAR模型对参数不施加零约束。(对无显着性的参数估计值并不从模型中剔除,不分析回归参数的经济意义。)(3)VAR模型的解释变量中不包括任何当期变量,所有与联立方程模型有关的问题在VAR模型中都不存在(主要是参数估计量的非一致性问题)。(4)VAR模型的另一个特点是有相当多的参数需要估计。比如一个VAR模型含有三个变量,最大滞后期k = 3,则有k N 2 = 3 32 = 27个参数需要估计。当样本容量较小时,多数参数的估计量误差较大。(5)无约束VAR模型的应用之一是预测。由于在VAR模型中每个方程的右侧都不含有当期变量,这种模型用于样本外一期预测的优点是不必对解释变量在预测
6、期内的取值做任何预测。(6)用VAR模型做样本外近期预测非常准确。做样本外长期预测时,则只能预测出变动的趋势,而对短期波动预测不理想。西姆斯(Sims)认为VAR模型中的全部变量都是内生变量。近年来也有学者认为具有单向因果关系的变量,也可以作为外生变量加入VAR模型。 附录:(file:B8c1)VAR模型静态预测的EViews操作:点击Procs选Make Model功能。点击Solve。在出现的对话框的Solution option(求解选择)中选择Static solution(静态解)。VAR模型动态预测的EViews操作:点击Procs选Make Model功能(工作文件中如果已经有
7、Model,则直接双击Model)。点击Solve。在出现的对话框的Solution option(求解选择)中选择Dynamic solution(静态解)。注意:Model窗口中的第一行,“ASSIGN ALL F”表示模拟结果保存在原序列名后加F的新序列中,以免原序列中的数据被覆盖掉。静态预测的效果非常好。动态预测的表现是前若干期预测值很接近真值,以后则只能准确预测变化的总趋势,而对动态的变化特征预测效果较差。综上所述,用VAR做样本外动态预测1,2期则预测效果肯定是非常好的。8.2 VAR模型稳定的条件VAR模型稳定的充分与必要条件是P1(见 (8.3) 式)的所有特征值都要在单位圆以
8、内(在以横轴为实数轴,纵轴为虚数轴的坐标体系中,以原点为圆心,半径为1的圆称为单位圆),或特征值的模都要小于1。1先回顾单方程情形。以AR(2)过程yt = f1 y t-1 + f2 y t-2 + ut (8.11)为例。改写为(1- f1 L - f2 L 2) yt = F(L) yt = ut (8.12)yt稳定的条件是F(L) = 0 的根必须在单位圆以外。2对于VAR模型,也用特征方程判别稳定性。以 (8.3) 式,Yt = c + P1 Yt-1 + ut,为例,改写为 (I - P1 L) Yt = c + ut (8.13)保持VAR模型稳定的条件是| I - P1L |
9、 = 0的根都在单位圆以外。| I P1L| = 0在此称作相反的特征方程(reverse characteristic function)。(第2章称特征方程)例8.1 以二变量(N = 2),k = 1的VAR模型=+ (8.14)其中P1 =为例分析稳定性。相反的特征方程是| I - P1L | = = = (1- (5/8) L)2 - 1/8 L 2 = (1-0.978 L) (1-0.27 L) = 0 (8.15)求解得L 1 = 1/0.978 = 1.022, L 2 = 1/0.27 = 3.690因为L 1,L 2都大于1,所以对应的VAR模型是稳定的。3VAR模型稳定
10、的另一种判别条件是,特征方程 | P1 - l I | = 0的根都在单位圆以内。特征方程 | P1 - l I | = 0的根就是P1的特征值。例8.2 仍以VAR模型(8.14) 为例,特征方程表达如下:| P1 - l I | = = = 0即(5/8 - l)2 1/8 = (5/8 - l)2 = (0.978 - l) (0.271 - l) = 0 (8.16)得 l1 = 0.9786, l2 = 0.2714。l1,l2是特征方程 | P1 - l I | = 0的根,是参数矩阵P1的特征值。因为l1 = 0.978, l2 = 0.271,都小于1,该VAR模型是稳定的。注
11、意:(1)因为L1=1/0.978 =1/l1, L2 =1/0.27=1/l2,所以特征方程与相反的特征方程的根互为倒数,L = 1/ l。(2)在单方程模型中,通常用相反的特征方程 F(L) = 0的根描述模型的稳定性,即单变量过程稳定的条件是(相反的)特征方程F(L) = 0的根都要在单位圆以外;而在VAR模型中通常用特征方程 | P1 - l I | = 0的根描述模型的稳定性。VAR模型稳定的条件是,特征方程 | P1 - l I | = 0的根都要在单位圆以内,或相反的特征方程| I L P1 | = 0的根都要在单位圆以外。4对于k1的k阶VAR模型可以通过友矩阵变换(compa
12、nion form),改写成1阶分块矩阵的VAR模型形式。然后利用其特征方程的根判别稳定性。具体变换过程如下。给出k阶VAR模型,Yt = c+ P1 Yt-1 + P2 Yt-2 + + Pk Yt-k + ut (8.17)再配上如下等式, Yt -1 = Yt -1 Yt -2 = Yt -2 Yt -k +1 = Yt - k +1把以上k个等式写成分块矩阵形式,=+ (8.18)其中每一个元素都表示一个向量或矩阵。令Yt = (Yt-1 Yt-2 Yt-k+1) NK1C = (c 0 0 0) NK1A =Ut = (ut 0 0 0) NK1上式可写为Yt = C + A Yt
13、-1 + Ut (8.19)注意,用友矩阵变换的矩阵(向量)用正黑体字母表示。k阶VAR模型用友矩阵表示成了1阶分块矩阵的VAR模型。 例如,2变量2阶VAR模型的友矩阵变换形式是=+ (8.20)其中等式的每一个元素(项)都表示一个41阶向量或44阶矩阵。 例如,2变量3阶VAR模型的友矩阵变换形式是=+ (8.21)其中等式的每一个元素(项)都表示一个61阶向量或66阶矩阵。VAR模型的稳定性要求A的全部特征值,即特征方程 | A - l I | = 0的全部根必须在单位圆以内或者相反的特征方程 | I - L A | = 0的全部根必须在单位圆以外。注意:特征方程中的A 是NkNk阶的。
14、特征方程中的I也是NkNk阶的。以2阶VAR模型的友矩阵变换为例,| I - AL| = | I - P1 L - P2 L2 | = 0 (8.22)的全部根必须在单位圆以外。以3阶VAR模型的友矩阵变换为例,| I - AL| = | I- P1 L - P2 L2 - P3 L3 | = 0 (8.23)的全部根必须在单位圆以外。因此,对于k阶VAR模型的友矩阵变换形式,特征方程是,| I - P1 L - P2 L 2 - - Pk L k | = 0 (8.24) 附录:求VAR模型特征根的EViews 4.1操作:在VAR模型估计结果窗口点击View 选 Lag Structrur
15、e, AR Roots Table 功能,即可得到VAR模型的全部特征根。若选Lag Structrure, AR Roots Graph 功能,即可得到单位圆曲线以及VAR模型全部特征根的位置图。 8.3 VAR模型的稳定性(stability)特征现在讨论VAR模型的稳定性特征。稳定性是指当把一个脉动冲击施加在VAR模型中某一个方程的新息(innovation)过程上时,随着时间的推移,这个冲击会逐渐地消失。如果是不消失,则系统是不稳定的。下面分析一阶VAR模型Yt = c+ P1 Yt-1 + ut (8.29)为例。当t = 1时,有Y1 = c + P1 Y0 + u1 (8.30)
16、当t = 2时,采用迭代方式计算,Y2 = c + P1 Y1 + u2 = c + P1 (c + P1 Y0 + u1) + u2= (I + P1) c + P12 Y0 + P1 u1 + u2 (8.31)当t = 3时,进一步迭代,Y3 = c + P1 Y2 + u3 = c + P1 (I + P1) c + P12 Y0 + P1 u1 + u2 + u3 = (I +P1 +P12) c +P13 Y0 +P12 u1 +P1 u2 +u3 (8.32) 对于t期,按上述形式推导Yt =(I+P1 +P12 +P1t-1)c +P1t Y0+ut-i (8.33)由上式可知
17、,P10 = I。通过上述变换,把Yt表示成了漂移项向量m、初始值向量Y0和新息向量ut的函数。可见系统是否稳定可以通过观察漂移项向量c、初始值向量Y0和新息向量ut经受冲击后的表现。假定模型是稳定的,将有如下3个结论。(1)假设t = 1时,对c 施加一个单位的冲击,那么到t期的影响是 (I + P1 + P12 + + P1t-1)当t 时,此影响是一个有限值,(I - P1) -1。(2)假设在初始值Y0上施加一个单位的冲击。到t期的影响是 P1t。随着t ,P1t 0,影响消失(因为对于平稳的VAR模型,P1中的元素小于1,所以随着t ,取t次方后,P1t 0)。(3)从ut-i项可以
18、看出,白噪声中的冲击离t期越远,影响力就越小。= (I - P1) -1,称作长期乘子矩阵,是对ut-i求期望得到的。 对单一方程的分析知道,含有单位根的自回归过程对新息中的脉动冲击有长久的记忆能力。同理,含有单位根的VAR模型也是非平稳过程。当新息中存在脉动冲击时,VAR模型中内生变量的响应不会随时间的推移而消失。平稳变量构成的一定是稳定(stability)的模型,但稳定的模型不一定由平稳变量构成。也可能由非平稳(nonstationary)变量(存在协整关系)构成。8.4 VAR模型滞后期k的选择建立VAR模型除了要满足平稳性条件外,还应该正确确定滞后期k。如果滞后期太少,误差项的自相关
19、会很严重,并导致参数的非一致性估计。正如在第4章介绍ADF检验的原理一样,在VAR模型中适当加大k值(增加滞后变量个数),可以消除误差项中存在的自相关。但从另一方面看,k值又不宜过大。k值过大会导致自由度减小,直接影响模型参数估计量的有效性。下面介绍几种选择k值的方法。1)用LR统计量选择k值。LR(似然比)统计量定义为, LR = - 2 (log L(k) - log L(k+1) ) (8.34)其中log L(k) 和log L(k+1) 分别是VAR(k) 和 VAR(k+1) 模型的极大似然估计值。k表示VAR模型中滞后变量的最大滞后期。LR统计量渐近服从分布。显然当VAR模型滞后
20、期的增加不会给极大似然函数值带来显着性增大时,即LR统计量的值小于临界值时,新增加的滞后变量对VAR模型毫无意义。应该注意,当样本容量与被估参数个数相比不够充分大时,LR的有限样本分布与LR渐近分布存在很大差异。 2) 用赤池(Akaike)信息准则 (AIC) 选择k值。 AIC = log+ (8.34)其中表示残差,T表示样本容量,k表示最大滞后期。选择k值的原则是在增加k值的过程中使AIC的值达到最小。EViews 3.0的计算公式是AIC = -2+ 3)用施瓦茨(Schwartz)准则 (SC) 选择k值。 SC = log+ (8.35)其中表示残差,T表示样本容量,k表示最大滞
21、后期。选择最佳k值的原则是在增加k值的过程中使SC值达到最小。EViews 3.0的计算公式是SC =-2+例8.3 以第8章案例为例,k =1、2、3、4时的logL、Akaike AIC和Schwarz SC的值见下表。VAR(1)VAR(2)VAR(3)VAR(4)logL184.6198.9200.0207.8-2 (log L(k) - log L(k+1) )28.62.215.6 c2(9) = 16.9Akaike AIC-7.84-8.27-8.09-8.23Schwarz SC-7.36-7.41-6.85-6.6建立滞后2期的VAR模型是可以的。附录:考察VAR模型最大滞
22、后期的EViews 4.1操作:在VAR模型估计结果窗口点击View 选 Lag Structrure, Lag Lengyh Criteria 功能,即可得到5个评价统计量的值。8.5 VAR模型的脉冲响应函数由于VAR模型参数的OLS估计量只具有一致性,单个参数估计值的经济解释是很困难的。要想对一个VAR模型做出分析,通常是观察系统的脉冲响应函数(1)脉冲响应函数。脉冲响应函数描述一个内生变量对误差冲击的反应。具体地说,它描述的是在随机误差项上施加一个标准差大小的冲击后对内生变量的当期值和未来值所带来的影响。对于如下VAR模型,y1, t表示GDP,y2, t表示货币供应量, y1, t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 回归 模型 讲义
限制150内