向量极化恒等式研究.doc
《向量极化恒等式研究.doc》由会员分享,可在线阅读,更多相关《向量极化恒等式研究.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、*-向量的不合常理性质的研究向量以其既能体现“形”的直观的位置特征,又具有“数”的良好的运算性质,为广大师生所喜欢。但向量又不同于数量,也不同于线段,它是多方的综合体。对于初学者来讲,向量的难度就在于它存在着多条与我们已经接受和应用了十几年的数量的运算及几何变换格格不入的法则,存在着一些不合学生以往逻辑的性质;对于使用向量时出现的各种错误也往往出现在这几条与我们固有的、想当然的不相一致的性质、定理上,不妨把这些性质、定理称为“不合常理的性质”。不合常理1向量不是有向线段,却用有向线段表示根据向量的定义,向量是既有大小又有方向的量,它可以用有向线段来表示,但有向线段又不等同于向量,有向线段有起点
2、、大小、方向三要素,而向量只有大小和方向,与起点无关。一个向量可用多条有向线段表示,自由向量的可移动性决定了多条不同起点的有向线段表示的可能是同一个向量,从而有向线段与向量就如同“形”与“神”的关系,不管“形” 的位置如何变动,但“神”始终不变,使得利用向量在解题过程中可以有众多的选择机会。在利用某个向量进行证明及运算时,可使用它的多个不同“外壳”,以达到解题目的,当然就更需要学生有较强的转化思想和化归能力。向量与有向线段的区别还体现在平行(共线)的关系上,有向线段有平行和共线之分,这符合学生的平面几何中对直线的理解。不合常理2向量有大小,却不可比较大小不合常理3零向量方向任意,却可平行不可垂
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 极化 恒等式 研究 钻研
限制150内