数字信号管理方案计划复习材料(附规范标准答案).doc
《数字信号管理方案计划复习材料(附规范标准答案).doc》由会员分享,可在线阅读,更多相关《数字信号管理方案计划复习材料(附规范标准答案).doc(72页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、/*第一章 数字信号处理概述简答题:1 在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。判断说明题:2模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 ( )答:错。需要增加采样和量化两道工序。3一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进
2、行等效的数字处理。( )答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T表示采样周期(假设T足够小,足以防止混叠效应),把从的整个系统等效为一个模拟滤波器。(a)如果,求整个系统的截止频率。(b)对于,重复(a)的计算。解 (a)因为当,在数 模变换中 所以得截止频率对应
3、于模拟信号的角频率为因此 由于最后一级的低通滤波器的截止频率为,因此对没有影响,故整个系统的截止频率由决定,是625Hz。 (b)采用同样的方法求得,整个系统的截止频率为 二、离散时间信号与系统频域分析计算题:1设序列的傅氏变换为,试求下列序列的傅里叶变换。(1) (2)(共轭)解:(1)由序列傅氏变换公式 DTFT可以得到DTFT (2)(共轭)解:DTFT2计算下列各信号的傅里叶变换。 (a) (b)(c) (d)解:(a) (b) (c)(d)利用频率微分特性,可得3序列的傅里叶变换为,求下列各序列的傅里叶变换。 (1) (2) (3) 解: (1) (2) (3)4序列的傅里叶变换为,
4、求下列各序列的傅里叶变换。 (1) (2) (3) 解:(1) (2) (3)5令和表示一个序列及其傅立叶变换,利用表示下面各序列的傅立叶变换。(1)(2) 解:(1) (2)6设序列傅立叶变换为,求下列序列的傅立叶变换。(1) 为任意实整数(2)(3)解:(1) (2) n为偶数 0 n为奇数 (3)7计算下列各信号的傅立叶变换。(1)(2)(3)【解】(1) (2)假定和的变换分别为和,则所以 (3) 8求下列序列的时域离散傅里叶变换 , , 解: 三、离散时间系统系统函数 填空题:1设是线性相位FIR系统,已知中的3个零点分别为1,0.8,1+j,该系统阶数至少为( )。解:由线性相位系
5、统零点的特性可知,的零点可单独出现,的零点需成对出现,的零点需4个1组,所以系统至少为7阶。简答题:2何谓最小相位系统?最小相位系统的系统函数有何特点?解:一个稳定的因果线性时不变系统,其系统函数可表示成有理方程式 ,他的所有极点都应在单位圆内,即。但零点可以位于Z平面的任何地方。有些应用中,需要约束一个系统,使它的逆系统也是稳定因果的。这就需要的零点也位于单位圆内,即。一个稳定因果的滤波器,如果它的逆系统也是稳定因果的,则称这个系统是最小相位。等价的,我们有如下定义。【定义】一个有理系统函数,如果它的零点和极点都位于单位圆内,则有最小相位。 一个最小相位系统可由它的傅里叶变换的幅值唯一确定。
6、从求的过程如下:给定,先求,它是的函数。然后,用替代,我们得到。最后,最小相位系统由单位圆内的的极、零点形成。一个稳定因果系统总可以分解成一个最小相位系统和一个全通系统的乘积,即完成这个因式分解的过程如下:首先,把的所有单位圆外的零点映射到它在单位圆内的共轭倒数点,这样形成的系统函数是最小相位的。然后,选择全通滤波器,把与之对应的中的零点映射回单位圆外。3何谓全通系统?全通系统的系统函数有何特点?解:一个稳定的因果全通系统,其系统函数对应的傅里叶变换幅值,该单位幅值的约束条件要求一个有理系统函数方程式的零极点必须呈共轭倒数对出现,即。因而,如果在处有一个极点,则在其共轭倒数点处必须有一个零点。
7、4有一线性时不变系统,如下图所示,试写出该系统的频率响应、系统(转移)函数、差分方程和卷积关系表达式。解:频率响应: 系统函数: 差分方程: 卷积关系:第三章 离散傅立叶变换一、离散傅立叶级数计算题:1如果是一个周期为N的周期序列,那么它也是周期为2N的周期序列。把看作周期为N的周期序列有(周期为N);把看作周期为2N的周期序列有(周期为2N);试用表示。解: 对后一项令,则 所以 二、离散傅立叶变换定义填空题2某DFT的表达式是,则变换后数字频域上相邻两个频率样点之间的间隔是( )。解:3某序列DFT的表达式是,由此可看出,该序列的时域长度是( ),变换后数字频域上相邻两个频率样点之间隔是(
8、 )。解:N 4如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件( 纯实数、偶对称 )。 解:纯实数、偶对称5采样频率为的数字系统中,系统函数表达式中代表的物理意义是(延时一个采样周期T=1/F),其中时域数字序列的序号代表的样值实际位置是(nT=n/F);的N点DFT中,序号代表的样值实际位置又是()。解:延时一个采样周期,6用8kHz的抽样率对模拟语音信号抽样,为进行频谱分析,计算了512点的DFT。则频域抽样点之间的频率间隔为8000/512,数字角频率间隔为 2pi/512和模拟角频率间隔 8000*0.0123。解:15.625,0.0123rad,98.4rad/s判断
9、说明题:7一个信号序列,如果能做序列傅氏变换对它进行分析,也就能做DFT对它进行分析。 ( )解:错。如果序列是有限长的,就能做DFT对它进行分析。否则,频域采样将造成时域信号的混叠,产生失真。计算题8令表示N点的序列的N点离散傅里叶变换,本身也是一个N点的序列。如果计算的离散傅里叶变换DFT得到一序列,试用求。解:因为 所以9序列,其4点DFT如下图所示。现将按下列(1),(2),(3)的方法扩展成8点,求它们8点的DFT?(尽量利用DFT的特性)(1) (2) (3) 解:(1)(2)(3)10设是一个2N点的序列,具有如下性质: 另设,它的N点DFT为,求的2N点DFT和的关系。解: 推
10、导过程略11试求以下有限长序列的N点DFT(闭合形式表达式)(1) (2)解:(1)因为,所以(2)由,得所以12计算下列序列的N点DFT: (1) (2),解:(1), (2) , k=m或k=-m= 0, 其它13已知一个有限长序列 (1) 求它的10点离散傅里叶变换(2) 已知序列的10点离散傅立叶变换为,求序列(3) 已知序列的10点离散傅立叶变换为,求序列解;(1)=1+2=1+2=1+2,(2)由可以知道,是向右循环移位2的结果,即(3)由可以知道,一种方法是先计算 =然后由下式得到10点循环卷积 另一种方法是先计算的10点离散傅立叶变换再计算乘积 由上式得到 14(1)已知序列:
11、,求的N点DFT。(2)已知序列:,则的9点DFT是 正确否?用演算来证明你的结论。解:(1) = 0, 其它(2) 可见,题给答案是正确的。15一个8点序列的8点离散傅里叶变换如图5.29所示。在的每两个取样值之间插入一个零值,得到一个16点序列,即 ,为偶数0 ,为奇数(1)求的16点离散傅里叶变换,并画出的图形。(2)设的长度N为偶数,且有,求。解:(1)因n为奇数时,故 , 另一方面 因此 所以 按照上式可画出的图形,如图5.34所示。16计算下列有限长序列的DFT,假设长度为N。 (1) (2)解:(1) (2) 17长度为8的有限长序列的8点DFT为,长度为16的一个新序列定义为
12、0 试用来表示。解: 而 因此,当时,;当时,令,得到:即 于是有 18试计算的离散傅里叶变换的值。【解】 所以 证明题:19设表示长度为N的有限长序列的DFT。(1) 证明如果满足关系式则(2) 证明当N为偶数时,如果 则解 (1)令显然可得 (2) (将n分为奇数和偶数两部分表示) 显然可得 简答题:21在离散傅里叶变换中引起混迭效应的原因是什么?怎样才能减小这种效应?解:因为为采样时没有满足采样定理减小这种效应的方法:采样时满足采样定理,采样前进行滤波,滤去高于折叠频率的频率成分。22试说明离散傅里叶变换与Z变换之间的关系。解:离散傅立叶变换是Z变换在单位圆上的等间隔采样。三、离散傅立叶
13、变换性质填空题:1已知序列,序列长度,写出序列的值( )。解:2已知,则和的5点循环卷积为( )。解: 3已知则的4点循环卷积为( )。解:证明题:4试证N点序列的离散傅立叶变换满足Parseval恒等式 证: 5是一个离散傅里叶变换对,试证明离散傅里叶变换的对称性: 证明略。6长为N的有限长序列,分别为的圆周共轭偶部及奇部,也即证明:证 7若证: (1) (2)由(2),将互换,则有 (这应该是反变换公式) (用,且求和取主值区) 与(1)比较 所以8若,求证。证: 而 (为整数) 0 所以 于是 9令表示N点序列的N点DFT,试证明:(a) 如果满足关系式,则。(b) 当N为偶数时,如果,
14、则。证: (a)N为偶数: N为奇数:而中间的一项应当满足: 因此必然有 这就是说,当N为奇数时,也有。(b)当N为偶数: 当N为偶数时,为奇数,故;又由于故有10设,求证。【解】因为 根据题意 因为 所以 11证明:若为实偶对称,即,则也为实偶对称。【解】 根据题意 下面我们令进行变量代换,则 又因为为实偶对称,所以,所以 可将上式写为 所以 即证。注意:若为奇对称,即,则为纯虚数并且奇对称,证明方法同上。计算题:12已知,用圆周卷积法求和的线性卷积。解: , 因为的长度为,的长度为所以的长度为,故应求周期的圆周卷积的值,即所以13序列,序列。(1)求线性卷积(2)若用基2 FFT的循环卷积
15、法(快速卷积)来得到两个序列的线性卷积运算结果,FFT至少应取多少点? 解:(1)所以,(2)若用基2FFT的循环卷积法(快速卷积)来完成两序列的线性卷积运算,因为的长度为;所以得长度为。故FFT至少应取点。14有限长为N=100的两序列 做出示意图,并求圆周卷积及做图。解 示意图略,圆周卷积15已知是长度为N的有限长序列,现将的每两点之间补进个零值,得到一个长为的有限长序列 求:DFT与的关系。 解:因为 令 16已知是N点有限长序列,。现将长度变成点的有限长序列 试求点DFT与的关系。解:由可得 所以在一个周期内,的抽样点数是倍,相当于在的每两个值之间插入个其他的数值(不一定为零),而当的
16、整数倍时,相等。17已知是N点有限长序列,。现将的每两点之间补进个零值点,得到一个点的有限长序列 试求点DFT与的关系。解:由可得而 所以是将(周期为N)延拓次形成的,即周期为。18已知序列和它的6点离散傅立叶变换。(1)若有限长序列的6点离散傅立叶变换为,求。(2)若有限长序列的6点离散傅立叶变换为的实部,即,求。(3)若有限长序列的3点离散傅立叶变换 ,求。解:(1)由知,是向右循环移位4的结果,即 (2) 由上式得到 (3) 由于 所以 即 或 19令表示N点的序列的N点离散傅里叶变换,本身也是一个N点的序列。如果计算的离散傅里叶变换得到一序列,试用求。解 因为 所以20为了说明循环卷积
17、计算(用DFT算法),分别计算两矩形序列的卷积,如果,求 (1)两个长度为6点的6点循环卷积。 (2)两个长度为6点的12点循环卷积。【解】这是循环卷积的另一个例子。令 图3-6中,N定义为DFT长度。若,则N点DFT为 如果我们将和直接相乘,得 由此可得 这个结果绘在图3-6中。显然,由于序列是对于旋转,则乘积的和始终等于N。当然也可以把和看作是2L点循环卷积,只要给他们增补L个零即可。若我们计算增长序列的2L点循环卷积,就得到图3-7所示序列。可以看出它等于有限长序列和的线性卷积。注意如图3-7所,时 所以图3-7(e)中矩形序列的DFT为() 循环卷积的性质可以表示为 考虑到DFT关系的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 管理 方案 计划 规划 复习 温习 材料 规范 标准答案
限制150内