初中数学题库试题考试试卷 2012年全国各地中考数学真题分类汇编_第13章二次函数.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初中数学题库试题考试试卷 2012年全国各地中考数学真题分类汇编_第13章二次函数.doc》由会员分享,可在线阅读,更多相关《初中数学题库试题考试试卷 2012年全国各地中考数学真题分类汇编_第13章二次函数.doc(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2012年全国各地中考数学真题分类汇编第13章 二次函数一、选择题1(2012菏泽)已知二次函数的图像如图所示,那么一次函数和反比例函数在同一平面直角坐标系中的图像大致是()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象。解答:解:二次函数图象开口向下,a0,对称轴x=0,b0,二次函数图象经过坐标原点,c=0,一次函数y=bx+c过第二四象限且经过原点,反比例函数位于第二四象限,纵观各选项,只有C选项符合2(2012烟台)已知二次函数y=2(x3)2+1下列说法:其图象的开口向下;其图象的对称轴为直线x=3;其图象顶点坐标为(3,1);当x3时,y随x的增大而减小则其中说法正
2、确的有()A1个B2个C3个D4个考点:二次函数的性质。专题:常规题型。分析:结合二次函数解析式,根据函数的性质对各小题分析判断解答即可解答:解:20,图象的开口向上,故本小题错误;图象的对称轴为直线x=3,故本小题错误;其图象顶点坐标为(3,1),故本小题错误;当x3时,y随x的增大而减小,正确;综上所述,说法正确的有共1个故选A点评:本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键3(2012广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()Ay=x21By=x2+1Cy
3、=(x1)2Dy=(x+1)2考点:二次函数图象与几何变换。专题:探究型。分析:直接根据上加下减的原则进行解答即可解答:解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x21故选A点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键4(2012泰安)将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()ABCD考点:二次函数图象与几何变换。解答:解:由“上加下减”的原则可知,将抛物线向上平移3个单位所得抛物线的解析式为:;由“左加右减”的原则可知,将抛物线向左平移2个单位所得抛物线的
4、解析式为:故选A5(2012泰安)二次函数的图象如图,若一元二次方程有实数根,则 的最大值为()AB3CD9考点:抛物线与x轴的交点。解答:解:抛物线的开口向上,顶点纵坐标为3,a0.,即,一元二次方程有实数根,=,即,即,解得,m的最大值为3故选B6(2012泰安)二次函数的图象如图,则一次函数的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限考点:二次函数的图象;一次函数的性质。解答:解:抛物线的顶点在第四象限,m0,n0,m0,一次函数的图象经过二、三、四象限,故选C7(2012泰安)设A,B,C是抛物线上的三点,则,的大小关系为()ABCD考点:二次
5、函数图象上点的坐标特征。解答:解:函数的解析式是,如右图,对称轴是,点A关于对称轴的点A是(0,y1),那么点A、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是故选A8(2012乐山)二次函数y=ax2+bx+1(a0)的图象的顶点在第一象限,且过点(1,0)设t=a+b+1,则t值的变化范围是()A0t1B0t2C1t2D1t1考点:二次函数图象与系数的关系。分析:由二次函数的解析式可知,当x=1时,所对应的函数值y=t=a+b+1把点(1,0)代入y=ax2+bx+1,ab+1=0,然后根据顶点在第一象限,可以画出草图并判断出a与b的符号,进而求出t=a+b+1的变化范围解答
6、:解:二次函数y=ax2+bx+1的顶点在第一象限,且经过点(1,0),易得:ab+1=0,a0,b0,由a=b10得到b1,结合上面b0,所以0b1,由b=a+10得到a1,结合上面a0,所以1a0,由得:1a+b1,且c=1,得到0a+b+12,0t2故选:B9(2012衢州)已知二次函数y=x27x+,若自变量x分别取x1,x2,x3,且0x1x2x3,则对应的函数值y1,y2,y3的大小关系正确的是()Ay1y2y3By1y2y3Cy2y3y1Dy2y3y1考点:二次函数图象上点的坐标特征。分析:根据x1、x2、x3与对称轴的大小关系,判断y1、y2、y3的大小关系解答:解:二次函数y
7、=x27x+,此函数的对称轴为:x=7,0x1x2x3,三点都在对称轴右侧,a0,对称轴右侧y随x的增大而减小,y1y2y3故选:A点评:此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键10(2012义乌市)如图,已知抛物线y1=2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2例如:当x=1时,y1=0,y2=4,y1y2,此时M=0下列判断:当x0时,y1y2; 当x0时,x值越大,M值越小;使得M大于2的x值不存在; 使得M=1的x值是或其
8、中正确的是()ABCD考点:二次函数综合题。解答:解:当x0时,利用函数图象可以得出y2y1;此选项错误;抛物线y1=2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;当x0时,根据函数图象可以得出x值越大,M值越大;此选项错误;抛物线y1=2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=2x2+2,最大值为2,故M大于2的x值不存在;使得M大于2的x值不存在,此选项正确;使得M=1时,可能是y1=2x2+2=1,解得:x1=,x2=,当y2=2x+2=1,解得:x=,由图象可得
9、出:当x=0,此时对应y2=M,抛物线y1=2x2+2与x轴交点坐标为:(1,0),(1,0),当1x0,此时对应y1=M,故M=1时,x1=,x=,故使得M=1的x值是或此选项正确;故正确的有:故选:D11(2012杭州)已知抛物线y=k(x+1)(x)与x轴交于点A,B,与y轴交于点C,则能使ABC为等腰三角形的抛物线的条数是()A2B3C4D5考点:抛物线与x轴的交点。分析:根据抛物线的解析式可得C(0,3),再表示出抛物线与x轴的两个交点的横坐标,再根据ABC是等腰三角形分三种情况讨论,求得k的值,即可求出答案解答:解:根据题意,得C(0,3)令y=0,则k(x+1)(x)=0,x=1
10、或x=,设A点的坐标为(1,0),则B(,0),当AC=BC时,OA=OB=1,B点的坐标为(1,0),=1,k=3;当AC=AB时,点B在点A的右面时,AC=,则AB=AC=,B点的坐标为(1,0),=1,k=;当AC=AB时,点B在点A的左面时,B点的坐标为(,0),=,k=;所以能使ABC为等腰三角形的抛物线的条数是3条;故选B点评:此题考查了抛物线与x轴的交点,此题要能够根据解析式分别求得抛物线与坐标轴的交点,结合等腰三角形的性质和勾股定理列出关于k的方程进行求解是解题的关键12(2012扬州)将抛物线yx21先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()Ay
11、(x2)22By(x2)22Cy(x2)22Dy(x2)22考点:二次函数图象与几何变换。分析:直接根据“上加下减,左加右减”的原则进行解答即可解答:解:将抛物线yx21先向左平移2个单位所得抛物线的函数关系式是:y(x2)21;将抛物线y(x2)21先向下平移3个单位所得抛物线的函数关系式是:y(x2)213,即y(x2)22故选B点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键13(2012资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c0的解集是()A1x5Bx5Cx1且x5Dx1或x5考点:二次函数与不等式(组)。分
12、析:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c0的解集解答:解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),图象与x轴的另一个交点坐标为(1,0)利用图象可知:ax2+bx+c0的解集即是y0的解集,x1或x5故选:D点评:此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型14(2012德阳)在同一平面直角坐标系内,将函数y=2x2+4x+1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A(1,1)B(1,2)C(2,2)D(1,1)考点:二次函数图象与几何
13、变换。分析:易得原抛物线的顶点坐标,根据横坐标与纵坐标“左加右减”可得到平移后的顶点坐标解答:解:y=2x2+4x+1=2(x2+2x)+1=2(x+1)21+1=2(x+1)21,原抛物线的顶点坐标为(1,1),将二次函数y=2(x+1)21,的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,y=2(x+12)211=2(x1)22,故得到图象的顶点坐标是(1,2)故选:B点评:此题考查了二次函数的平移问题;用到的知识点为:二次函数的平移,看顶点的平移即可;上下平移只改变顶点的纵坐标,上加下减15(2012德阳)设二次函数y=x2+bx+c,当x1时,总有y0,当1x3时,
14、总有y0,那么c的取值范围是()Ac=3Bc3C1c3Dc3考点:二次函数的性质。分析:因为当x1时,总有y0,当1x3时,总有y0,所以函数图象过(1,0)点,即1+b+c=0,有题意可知当x=3时,y=9+3b+c0,所以联立即可求出c的取值范围解答:解:当x1时,总有y0,当1x3时,总有y0,函数图象过(1,0)点,即1+b+c=0,当1x3时,总有y0,当x=3时,y=9+3b+c0,联立解得:c3,故选B点评:本题考查了二次函数的增减性,解题的关键是有给出的条件得到抛物线过(1,0),再代入函数的解析式得到一次项系数和常数项的关系16(2012兰州)抛物线y2x21的对称轴是()A
15、直线B直线Cy轴D直线x2考点:二次函数的性质。分析:已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴解答:解:抛物线y2x21的顶点坐标为(0,1),对称轴是直线x0(y轴),故选C点评:主要考查了求抛物线的顶点坐标与对称轴的方法17(2012张家界)当a0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A BCD考点:反比例函数的图象;一次函数的图象。解答:解:当a0时,y=ax+1过一二三象限,y=过一三象限;当a0时,y=ax+1过一二四象限,y=过二四象限;故选C18(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,
16、就称直线与抛物线相切,这条直线是抛物线的切线有下列命题:直线y=0是抛物线y=x2的切线直线x=2与抛物线y=x2 相切于点(2,1)直线y=x+b与抛物线y=x2相切,则相切于点(2,1)若直线y=kx2与抛物线y=x2 相切,则实数k=其中正确命题的是()ABCD考点:二次函数的性质;根的判别式。解答:解:直线y=0是x轴,抛物线y=x2的顶点在x轴上,直线y=0是抛物线y=x2的切线,故本小题正确;抛物线y=x2的顶点在x轴上,开口向上,直线x=2与y轴平行,直线x=2与抛物线y=x2 相交,故本小题错误;直线y=x+b与抛物线y=x2相切,x24xb=0,=16+4b=0,解得b=4,
17、把b=4代入x24xb=0得x=2,把x=2代入抛物线解析式可知y=1,直线y=x+b与抛物线y=x2相切,则相切于点(2,1),故本小题正确;直线y=kx2与抛物线y=x2 相切,x2=kx2,即x2kx+2=0,=k22=0,解得k=,故本小题错误故选B19(2012潜江)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有()A3个B2个C1个D0个考点:二次函数图象与系数的关系。分析:首先根据二次函数图象开口方向可得a0,根据图象与y轴交点可得c0,再根据二次函数的对称轴
18、x=,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出的正误;根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出的正误;利用b2a=0时,求出a2b+4c0,再利用当x=4时,y0,则16a+4b+c0,由知,b=2a,得出8a+c0解答:解:根据图象可得:a0,c0,对称轴:x=0,它与x轴的两个交点分别为(1,0),(3,0),对称轴是x=1,=1,b+2a=0,故错误;a0,b0,abc0,故正确;a2b+4c0;b+2a=0,a2b+4c=a+2b4b+4c=4b+4c,ab+c=0,4a4b+4c=0,4b+4c=4a,a0,a2b+4c=4b+4c
19、=4a0,故此选项正确;根据图示知,当x=4时,y0,16a+4b+c0,由知,b=2a,8a+c0;故正确;故正确为:三个故选:A点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)二、填空题1(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的
20、关系为,由此可知铅球推出的距离是 m。考点:二次函数的应用。解答:解:令函数式中,解得,(舍去),即铅球推出的距离是10m。故答案为:10。2(2012扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,那么DE长的最小值是1考点:二次函数的最值;等腰直角三角形。专题:计算题。分析:设ACx,则BC2x,然后分别表示出DC、EC,继而在RTDCE中,利用勾股定理求出DE的表达式,利用函数的知识进行解答即可解答:解:如图,连接DE设ACx,则BC2x,ACD和BCE分别是等腰直角三角形,DCA45,ECB45,DC,CE(2x)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学题库试题考试试卷 2012年全国各地中考数学真题分类汇编_第13章二次函数 初中 数学 题库 试题 考试 试卷 2012 全国各地 中考 分类 汇编 13 二次 函数
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内