【高考数学精品专题】高三数学高考复习知识点:空间向量与立体几何.docx
《【高考数学精品专题】高三数学高考复习知识点:空间向量与立体几何.docx》由会员分享,可在线阅读,更多相关《【高考数学精品专题】高三数学高考复习知识点:空间向量与立体几何.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间向量与立体几何01 空间向量及其运算 【知识点梳理】知识点一:空间向量的有关概念1空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量(2)长度或模:空间向量的大小(3)表示方法:几何表示法:空间向量用有向线段表示;字母表示法:用字母a,b,c,表示;若向量a的起点是A,终点是B,也可记作:,其模记为|a|或|.知识点诠释:(1)空间中点的一个平移就是一个向量;(2)数学中讨论的向量与向量的起点无关,只与大小和方向有关,只要不改变大小和方向,空间向量可在空间内任意平移,故我们称之为自由向量。2几类常见的空间向量名称方向模记法零向量任意00单位向量任意1相反向量相反相等a的相反向量:a
2、的相反向量:相等向量相同相等ab知识点二:空间向量的线性运算(1)向量的加法、减法空间向量的运算加法ab减法ab加法运算律交换律:abba结合律:(ab)ca(bc)(2)空间向量的数乘运算定义:实数与空间向量a的乘积a仍然是一个向量,称为向量的数乘运算当0时,a与向量a方向相同;当0时,a与向量a方向相反;当0时,a0;a的长度是a的长度的|倍运算律结合律:(a)(a)()a.分配律:()aaa,(ab)ab.知识点诠释:(1)空间向量的运算是平面向量运算的延展,空间向量的加法运算仍然满足平行四边形法则和三角形法则而且满足交换律、结合律,这样就可以自由结合运算,可以将向量合并;(2)向量的减
3、法运算是向量加法运算的逆运算,满足三角形法则(3)空间向量加法的运算的小技巧:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,即:因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量;首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量,即:;知识点三:共线问题共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量(2)方向向量:在直线l上取非零向量a,与向量a平行的非零向量称为直线l的方向向量规定:零向量与任意向量平行,即对任意向量a,都有0a.(3)共线向量定理:对于空间任意两个向量a,b(b0),ab
4、的充要条件是存在实数使ab.(4)如图,O是直线l上一点,在直线l上取非零向量a,则对于直线l上任意一点P,由数乘向量定义及向量共线的充要条件可知,存在实数,使得a.知识点诠释:此定理可分解为以下两个命题:(1)存在唯一实数,使得;(2)存在唯一实数,使得,则注意:不可丢掉,否则实数就不唯一(3)共线向量定理的用途:判定两条直线平行;(进而证线面平行)证明三点共线。注意:证明平行时,先从两直线上取有向线段表示两个向量,然后利用向量的线性运算证明向量共线,进而可以得到线线平行,这是证明平行问题的一种重要方法。证明三点共线问题,通常不用图形,直接利用向量的线性运算即可,但一定要注意所表示的向量必须
5、有一个公共点。知识点四:向量共面问题共面向量(1)定义:平行于同一个平面的向量叫做共面向量(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使pxayb.(3)空间一点P位于平面ABC内的充要条件:存在有序实数对(x,y),使xy或对空间任意一点O,有xy.(4)共面向量定理的用途:证明四点共面线面平行(进而证面面平行)。知识点五:空间向量数量积的运算空间向量的数量积(1)定义:已知两个非零向量a,b,则|a|b|cosa,b叫做a,b的数量积,记作ab.即ab|a|b|cosa,b规定:零向量与任何向量的数量积为0.(2)常用结论
6、(a,b为非零向量)abab0.aa|a|a|cosa,a|a|2.cosa,b.(3)数量积的运算律数乘向量与数量积的结合律(a)b(ab)a(b)交换律abba分配律a(bc)abac知识点诠释:(1)由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同(2)两向量的数量积,其结果是数而非向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定(3)两个向量的数量积是两向量的点乘,与以前学过的向量之间的乘法是有区别的,在书写时一定要将它们区别开来,不可混淆知识点六:利用
7、数量积证明空间垂直关系当ab时,ab0.知识点七:夹角问题1.定义:已知两个非零向量、,在空间任取一点D,作,则AOB叫做向量与的夹角,记作,如下图。根据空间两个向量数量积的定义:,那么空间两个向量、的夹角的余弦。知识点诠释:(1)规定:(2)特别地,如果,那么与同向;如果,那么与反向;如果,那么与垂直,记作。2.利用空间向量求异面直线所成的角异面直线所成的角可以通过选取直线的方向向量,计算两个方向向量的夹角得到。在求异面直线所成的角时,应注意异面直线所成的角与向量夹角的区别:如果两向量夹角为锐角或直角,则异面直线所成的角等于两向量的夹角;如果两向的夹角为钝角,则异面直线所成的角为两向量的夹角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
限制150内