BS模型-详细推导ppt课件.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《BS模型-详细推导ppt课件.pptx》由会员分享,可在线阅读,更多相关《BS模型-详细推导ppt课件.pptx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、嘻嘻过渡页 TRANSITION PAGE Chapter.1前奏-背景介绍“一切数学公式模型,都是人类发明出来,并为人类服务的。它们与人类最大的区别一切数学公式模型,都是人类发明出来,并为人类服务的。它们与人类最大的区别就是没有感情,特别是恐惧和贪婪。公式不会看到金发碧眼和黄金白银就亢奋发狂,也就是没有感情,特别是恐惧和贪婪。公式不会看到金发碧眼和黄金白银就亢奋发狂,也不会面对枪林弹雨和不会面对枪林弹雨和20122012而瘫软发抖,即使对一个最出色的交易员来说,这也是难于登而瘫软发抖,即使对一个最出色的交易员来说,这也是难于登天的品质。天的品质。” 华尔街的猴子华尔街的猴子 安德鲁安德鲁贝宁
2、森贝宁森 目前国际上的期权定价方法五花八门,主流的主要有四种:Black-Scholes方法(简称B-S)、二叉树定价法、蒙特卡罗模拟法以及有保值参数和杠杆效应的解析表达式等等。其中Black-Scholes方法是这里面唯一的解析方法,而其余三种都是数值法。期权定价现状B-S是两位经济学家BLACK、SCHOLES名字的缩写,为了纪念他们发现该模型而用他们的名字命名。 在二叉树的期权定价模型型中,如果标的证券期末价格的可能性无限增多时,其价格的树状结构将无限延伸,从每个结点变化到下一个结点(上涨或下跌)的时间将不断缩短,如果价格随着时间周期的缩短,其调整的幅度也逐渐缩小的话,在极限的情况下,二
3、叉树模型对欧式权证的定价就演变为关于价权证定价理论的经典模型:B-S模型。B-S模型与二叉树模型的关系It is well known that the binomial model converges to the Black-Scholes model when thenumber of time periods increases to infinity and the length of each time period is infinitesimallyshort. This proof was provided in Cox , Ross and Rubinstein(1979)
4、.BSM模型之前大多数的期权定价都是用期权预期收益的贴现值表示;然而期权期望收益依赖于未来股票价格的概率分布,期望收益的贴现值依赖于贴现率 BSM模型之所以称之为现代期权定价理论的基础,是因为该模型对于期权的定价避免了对未来股票价格的概率分布和投资者风险偏好的依赖原理:构建一个投资策略组合,买入一种股票的同时,卖出一份一定份额的改股票的看涨期权,可以构造一个无风险的投资组合,即投资组合的收益完全独立于股票价格的变化在资本市场均衡条件下,根据资本资产定价模型,这种投资组合的收益应等于短期利率。因此,期权收益可以用标的股票和无风险资本构造的投资组合来复制,在无套利机会存在的情况下,期权价格等于购买
5、投资组合的成本,即期权价格依赖于股票价格的波动量、无风险利率、期权到期时间、敲定价格、股票市价Chapter.2配乐-必备知识布朗运动(基本维基过程) 配乐-必备知识伊藤过程& 伊藤引理(IT0定理) 泰勒展开股票价格运动过程股票价格自然对数变化过程200001()()()()2!GxxGxGxxGxx ()(1)10011()(),!(1)!nnnnGxxGxxxnn00()()GGxxGxxdGGGxxdxdGdGdxdx泰勒定理:一元函数情形:记:略去的高阶无穷小项,则有:000000(,)(,)()(,)Gxx yyGxyxy Gxyxy23000011()(,)()(,)2!3!xy
6、GxyxyGxyxyxy001()(,)!nxyGxynxy1001()(,),(1)!nxyGxx yynxyxy()GGGxy GGxGyxyxyxyxyGGdGdxdyxy二元函数情形:略去的高阶无穷小项,则有或布朗运动(基本维基过程) 标准布朗运动设代表一个小的时间间隔长度, 代表变量z在时间 内的变化,遵循标准布朗运动的 具有两种特征:特征1: 和 的关系满足(6.1): (6.1)其中, 代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值。tzzt z特征2:对于任何两个不同时间间隔, 和 的值相互独立。 考察变量z在一段较长时间T中的变化情形,我们可得 (
7、6.2)当0时 ,我们就可以得到极限的标准布朗运动: (6.3)tzTzNii1) 0()(dtdzt z先引入两个概念:漂移率和方差率。标准布朗运动的漂移率为0,方差率为1.0。 我们令漂移率的期望值为a,方差率的期望值为b2,就可得到变量x 的普通布朗运动: b是标准差 (6.4)其中,a和b均为常数,dz 遵循标准布朗运动。 普通布朗运动 bdzadtdx普通的布朗运动随时间间隔的增加,需要加上一个漂移项,表示离开起始位置的程度(常数比率),而其运动是正态规律运动。总体是一个叠加运动 普通布朗运动假定漂移率和方差率为常数,若把变量x的漂移率和方差率当作变量x和时间t的函数,我们可以从公式
8、(6.4)得到伊藤过程(Ito Process): (6.5) 其中,dz 是一个标准布朗运动,a、b是变量x和t的函数,变量x的漂移率为a,方差率为b2。 伊藤过程 dztxbdttxadx),(),(漂移非常数,正态规律项非常数,都是与时间和其目前位置有关,更加复杂的随机过程证券价格的变化过程可以用漂移率为S 、方差率为 的伊藤过程来表示: (6.6) SdzSdtdS22SdzdtSdS表示未来时间间隔后的证券价格增量变化是符合漂移和方差率只和目前价格有关系(线性关系)的伊藤随机过程(即普通布朗运动的升级版)。表示未来价格变化率符合普通布朗运动,(描述运动偏离标注布朗运动的漂移率和方差率
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- BS 模型 详细 推导 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内