轨迹方程的求法及其典型例题(含规范标准答案).doc
《轨迹方程的求法及其典型例题(含规范标准答案).doc》由会员分享,可在线阅读,更多相关《轨迹方程的求法及其典型例题(含规范标准答案).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.*轨迹方程的求法一、知识复习轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P(3,0)是圆x2+y26x55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。例2、如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足APB=90,求矩形APBQ的顶点Q的轨迹方程.解:设AB的中点为R,坐标为(x,y),则在RtABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在RtOAR中,|AR|2=|AO|2|OR|2=36(x
2、2+y2)又|AR|=|PR|=所以有(x4)2+y2=36(x2+y2),即x2+y24x10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y24x10=0,得10=0整理得:x2+y2=56,这就是所求的轨迹方程.例3、如图, 直线L1和L2相交于点M,L1L2, 点N L1. 以A, B为端点的曲线段C上的任一点到L2的距离与到点N的距离相等. 若DAMN为锐角三角形, |AM|= , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C的方程. 解法一:如图建立坐标系
3、,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点。依题意知:曲线段C是以点N为焦点,以l2为准线的抛物线的一段,其中A,B分别为C的端点。设曲线段C的方程为,其中xA,xB分别为A,B的横坐标,P=|MN|。由,两式联立解得。再将其代入式并由p0解得因为AMN是锐角三角形,所以,故舍去p=4,xA=1由点B在曲线段C上,得。综上得曲线段C的方程为解法二:如图建立坐标系,分别以l1、l2为轴,M为坐标原点。作AEl1,ADl2,BFl2垂足分别为E、D、F设A(xA, yA)、B(xB, yB)、N(xN, 0)依题意有例4、已知两点以及一条直线:y=x,设长为的线段AB在直线上移动,求直
4、线PA和QB交点M的轨迹方程解:PA和QB的交点M(x,y)随A、B的移动而变化,故可设,则PA:QB:消去t,得当t=2,或t=1时,PA与QB的交点坐标也满足上式,所以点M的轨迹方程是例5、设点A和B为抛物线 y2=4px(p0)上原点以外的两个动点,已知OAOB,OMAB,求点M的轨迹方程,并说明它表示什么曲线. 解法一:设M(x,y),直线AB的方程为y=kx+b由OMAB,得k=由y2=4px及y=kx+b,消去y,得k2x2+(2kb4p)x+b2=0所以x1x2=, y1y2=,由OAOB,得y1y2=x1x2所以=, b=4kp 故y=kx+b=k(x4p), 得x2+y24p
5、x=0(x0)故动点M的轨迹方程为x2+y24px=0(x0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.|解法二:设A(x1,y1),B(x2,y2),M(x,y)依题意,有得(y1y2)(y1+y2)=4p(x1x2)若x1x2,则有 ,得y12y22=16p2x1x2 代入上式有y1y2=16p2 代入,得 代入,得所以即4pxy12=y(y1+y2)y12y1y2 、代入上式,得x2+y24px=0(x0)当x1=x2时,ABx轴,易得M(4p,0)仍满足方程.故点M的轨迹方程为x2+y24px=0(x0)它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.轨
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轨迹 方程 求法 及其 典型 例题 规范 标准答案
限制150内