线线角线面角二面角的讲义.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《线线角线面角二面角的讲义.doc》由会员分享,可在线阅读,更多相关《线线角线面角二面角的讲义.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.线线角与线面角一、课前预习1.在空间四边形ABCD中,AD=BC=2, E、F分别为AB、CD的中点且EF=,AD、BC所成的角为 .2.如图,在长方体ABCD-A1B1C1D1中 ,B1C和C1D与底面所成的角分别为60和45,则异面直线B1C和C1D所成角的余弦值为 ( ) (A). (B). (C). (D). 3.平面与直线所成的角为,则直线与平面内所有直线所成的角的取值范围是 4.如图,ABCD是正方形,PD平面ABCD,PD=AD,则PA与BD所成的角的度数为(A).30 (B).45 (C).60 (D).905.有一个三角尺ABC,A=30, C=90,BC是贴于桌面上,当三
2、角尺与桌面成45角时,AB边与桌面所成角的正弦值是 二、典型例题例1.(96全国) 如图,正方形ABCD所在平面与正方形ABEF所在平面成60角,求异面直线AD与BF所成角的余弦值.【备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有:平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要有严格的推理论证过程,还要有合理的步骤.】例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B所成的角.备课
3、说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:利用平面垂直的性质找平面的垂线.点的射影在面内的特殊位置.例3. 已知直三棱住ABC-A1B1C1,AB=AC, F为棱BB1上一点,BFFB1=21, BF=BC=. (1)若D为BC的中点,E为线段AD上不同于A、D的任意一点,证明:EFFC1; (2)试问:若AB=,在线段AD上的E点能否使EF与平面BB1C1C成60角,为什么?证明你的结论.备课说明:这是一道探索性命题,也是近年高考热点问题,解决这类问题,常假设命题成立,再研究是否与已知条件矛盾,从而判断命题是否成立.
4、一、知识与方法要点:1斜线与平面所成的角就是斜线与它在平面内的射影的夹角。求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。若垂足的位置难以确定,可考虑用其它方法求出斜线上一点到平面的距离。2二面角的大小用它的平面角来度量,求二面角大小的关键是找到或作出它的平面角(要证明)。作二面角的平面角经常要用三垂线定理,关键是过二面角的一个面内的一点向另一个面作垂线,并确定垂足的位置。若二面角的平面角难以作出,可考虑用射影面积公式求二面角的大小。3判定两个平面垂直,关键是在一个平面内找到一条垂直于另一个平面的直线。两个平面垂直
5、的性质定理是:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面二、例题例1正方体ABCD-A1B1C1D1中,M为C1D1中点(1)求证:AC1平面A1BD(2)求BM与平面A1BD成的角的正切值解: (1)连AC,C1C平面ABCD, C1CBD又ACBD, AC1BD同理AC1A1BA1BBD=BAC1平面A1BD(2)设正方体的棱长为,连AD1,AD1交A1D于E,连结ME,在D1AC1中,MEAC1,AC1平面A1BDME平面A1BD连结BE,则MBE为BM与平面A1BD成的角在中,例2如图,把等腰直角三角形ABC以斜边AB为轴旋转,使C点移动的距离等于AC时停止
6、,并记为点P(1)求证:面ABP面ABC;(2)求二面角C-BP-A的余弦值证明(1) 由题设知APCPBP点P在面ABC的射影D应是ABC的外心,即DABPDAB,PD面ABP,由面面垂直的判定定理知,面ABP面ABC(2)解法1 取PB中点E,连结CE、DE、CDBCP为正三角形,CEBDBOD为等腰直角三角形,DEPBCED为二面角C-BP-A的平面角又由(1)知,面ABP面ABC,DCAB,AB面ABP面ABC,由面面垂直性质定理,得DC面ABPDCDE因此CDE为直角三角形设,则,例3如图所示,在正三棱柱中,截面侧面(1)求证:;(2)若,求平面与平面所成二面角(锐角)的度数证明:在
7、截面A1EC内,过E作EGAC,G是垂足,如图,面AEC面AC,EG侧面AC取AC的中点F,分别连结BF和FC,由ABBC得BFAC面ABC侧面AC,BF侧面AC,得BFEGBF和EG确定一个平面,交侧面AC于FGBE侧面AC,BEFG,四边形BEGF是 ,BEFGBEAA,FGAA,AACFGC解:(2)分别延长CE和C1B1交于点D,连结ADBACBCA60,DACDABBAC90,即 DAACCC面ACB,由三垂线定理得DAAC,所以CAC是所求二面角的平面角且ACC90CCAAABAC,CAC45,即所求二面角为45说明:如果改用面积射影定理,则还有另外的解法三、作业: 1已知平面的一
8、条斜线a与平面成角,直线b,且a,b异面,则a与b所成的角为(A)A有最小值,有最大值B无最小值,有最大值。C有最小值,无最大值D有最小值,有最大值。2下列命题中正确的是(D)A过平面外一点作该平面的垂面有且只有一个B过直线外一点作该直线的平行平面有且只有一个C过直线外一点作该直线的垂线有且只有一条D过平面外的一条斜线作该平面的垂面有且只有一个3一条长为60的线段夹在互相垂直的两个平面之间,它和这两个平面所成的角分别为 45和30,这条线段的两个端点向平面的交线引垂线,则垂足间的距离是(A)A30B20C15D124设正四棱锥SABCD的侧棱长为,底面边长为,E是SA的中点,则异面直线BE与S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线线 角线面角 二面角 讲义
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内