第2讲三角变换与解三角形.doc
《第2讲三角变换与解三角形.doc》由会员分享,可在线阅读,更多相关《第2讲三角变换与解三角形.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-! 三角变换与解三角形考情解读1.高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系、诱导公结合2.利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查1两角和与差的正弦、余弦、正切公式(1)sin()sin cos cos sin . (2)cos()cos cos sin sin .(3)tan().2二倍角的正弦、余弦、正切公式(1)sin 22sin cos . (2)cos 2cos2sin22cos2112sin2.(3)tan 2.3三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简(2)等式的两边同时
2、变形为同一个式子(3)将式子变形后再证明4正弦定理2R(2R为ABC外接圆的直径)变形:a2Rsin A,b2Rsin B,c2Rsin C.sin A,sin B,sin C.abcsin Asin Bsin C.5余弦定理a2b2c22bccos A, b2a2c22accos B, c2a2b22abcos C.推论:cos A,cos B,cos C.变形:b2c2a22bccos A,a2c2b22accos B,a2b2c22abcos C.6面积公式SABCbcsin Aacsin Babsin C.7解三角形(1)已知两角及一边,利用正弦定理求解(2)已知两边及一边的对角,利用
3、正弦定理或余弦定理求解,解的情况可能不唯一(3)已知两边及其夹角,利用余弦定理求解(4)已知三边,利用余弦定理求解热点一三角变换例1(1)已知sin()sin ,0,则cos()等于()A BC. D. (2) (2013浙江)已知R,sin 2cos ,则tan 2等于()思维启迪(1)利用和角公式化简已知式子,和cos()进行比较(2) “切化弦” ;平方;降次A. B. C D 思维升华(1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特
4、别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解设函数f(x)cos(2x)sin2x.(1)求函数f(x)的最小正周期和最大值;(2)若是第二象限角,且f()0,求的值热点二解三角形例1、完成考前11页的考向1和2;(分小组完成)例2(2014江苏)若ABC的内角满足sin Asin B2sin C,则cos C的最小值是_例3在ABC中,角A,B,C所对的边分别为a,b,c,满足a2sin A,0.(1)求边c的大小;(2)求ABC面积的最大值思维启迪(1)将0中的边化成角,然后利用和差公式求cos C
5、,进而求c.(2)只需求ab的最大值,可利用cos C和基本不等式求解 思维升华三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破几种常见变形:(1)abcsin Asin Bsin C;(2)a2Rsin A,b2Rsin B,c2Rsin C,其中R为ABC外接圆的半径;(3)sin(AB)sin C,cos(AB)cos C.例4已知角A、B、C是ABC的三个内角,若向量m(1cos(AB),cos),n(,cos),且mn.(1)求tan Atan B的值;(2)求的最大值例5在ABC中,角A,B,C所对的边分别为a,b,c,q(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角 变换 三角形
限制150内