现代分子生物学情况总结(朱玉贤整理完全版).doc
《现代分子生物学情况总结(朱玉贤整理完全版).doc》由会员分享,可在线阅读,更多相关《现代分子生物学情况总结(朱玉贤整理完全版).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-/一、绪论两个经典实验1、 肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。2、 T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过12个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35
2、S标记的蛋白质,但含30%以上的32P标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。二、染色体与DNA嘌呤 嘧啶腺嘌呤 鸟嘌呤 胞嘧啶 尿嘧啶 胸腺嘧啶染色体性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白真核生
3、物基因组DNA真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;
4、4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。原核生物基因组的特点:1、结构简练,绝大部分用来编码蛋白质,只有很少一部分控制基因表达的序列不转录;2、存在转录单元,原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或者几个特定部位,形成功能单位或转录单元,可以被一起转录为含多个mRNA的分子;3、有重叠基因,所谓重叠基因就是同一段DNA携带两种或以上不同的蛋白质的编码信息。DNA的结构DNA又称脱氧核糖核酸,是d
5、eoxyribonucleic acid的简称。L=T+W,L指环形DNA分子两条链间交叉的次数,只要不发生断裂,L是一个常量。T为双螺旋的盘绕数,W为超螺旋数。双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。双螺旋碱基间距(nm)螺旋直径(nm)每轮碱基数螺旋方向A-DNA0.262.611右B-DNA0.342.010右Z-DNA0.371.812左DNA的复制半保留复制:Semi -conservative replication;半不连续复制:Semi-discontinuous replication把生物体的复制单位称为复制子,一个复制子只含一个复制起始点。归纳起来,无论是原
6、核生物还是真核生物,复制起点是固定的,表现为固定的序列,并识别参与复制起始的特殊蛋白质。复制叉移动的方向和速度虽是多种多样的,但以双向等速方式为主。复制的几种主要方式双链DNA的复制大都以半包六复制方式进行的,通过“眼”型、型、滚环型或D-环型等以复制叉的形式进行。1、 线性DNA双链进行双向复制时,由于已知的DNA聚合酶和RNA聚合酶都只能从5到3移动,所以,复制叉呈眼型;2、 环状双链DNA复制可分为型、滚环型和D-环形几种类型、型,大肠杆菌染色体DNA是环状双链DNA,它的复制是典型的型复制,从一个起点开始,同时向两个方向进行复制,当两个复制叉相遇时,复制就停止、滚环型,是单向复制的一种
7、特殊方式,在噬菌体中很常见。DNA的合成由对正链原点的专一切割开始,所形成的自由5端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,使其3-OH端在DNA聚合酶的作用下不断延伸、D-环形,也是单向复制的一种特殊方式,双链环在固定点解开进行复制,但两条链的合成是高度不对称的,最初仅以一条母链作为新链合成的模板,迅速合成出互补链,另一条链则称为游离的单链环。原核生物和真核生物DNA复制的特点原核生物DNA复制特点DNA双螺旋的解旋拓扑异构酶(DNA topoisomerase):消除解链造成的正超螺旋的堆积,消除阻碍解链继续进行的这种压力,使复制得以延伸。拓扑异构酶,催化DNA链的断裂和重新连接
8、,每次只作用于一条链,不需要辅助 因子如ATP等;拓扑异构酶能同时断裂和连接两条DNA链,通常需要辅助因子。DNA解链酶(DNA helicase):解开双链DNA(DnaB蛋白:解螺旋酶;DnaA蛋白:辨认复制起始点;DnaC蛋白:辅助DnaB在起始点上结合并打开双链)单链结合蛋白(SSB):保证被解链酶解开的单链在复制完成前能保持单链结构DNA复制的引发所有的DNA复制都是从一个固定起点开始的,而且目前所知的DNA聚合酶都只能延长DNA链而不能从头合成DNA链。DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由DNA聚合酶从RNA引物3末端开始合成新的DNA链。DNA
9、聚合酶功能DNA聚合酶DNA聚合酶(修复)DNA聚合酶聚合作用53有有有外切酶活性53有无无外切酶活性35有有有生物学活性10.0515聚合酶部分亚基的功能亚基功能聚合活性35核酸外切酶活性组建核心酶两个亚基形成滑动夹子,提高酶的持续合成能力真核生物DNA复制的特点真核生物DNA复制与原核生物DNA复制有很多不同,例如,真核生物每条染色体上可以有多个复制起点,而原核生物只有一个复制起点;真核生物DNA的复制只能在分裂期进行,原核细胞在整个细胞周期都能进行;真核生物的染色体在全部完成复制前,各个起点上DNA不能再开始,而在快速生长的原核生物中,复制起点可以连续开始新的DNA复制,表现虽然只有一个
10、复制单元,但却可有多个复制叉。真核生物DNA复制叉的移动速度不到大肠杆菌的1/20,因此,人类DNA中每隔30000300000个碱基就有一个复制起始点;真核生物DNA聚合酶有15种以上,大肠杆菌中存在的聚合酶有5种DNA复制的调控真核细胞中DNA复制有3个水平的调控:1、细胞生活水平调控,也称限制点调控,决定细胞停留在G1期还是进入S期;2、染色体水平调控;3、复制子水平调控,决定复制的起始与否。DNA的修复错配修复一旦复制通过复制起点,母链就会在开始DNA合成前的几秒至几分钟内被甲基化,此后只要两条DNA链上碱基配对出现错误,错配系统就会根据“保存母链,修正子链”的原则,找出错误碱基所在的
11、DNA链,并在对应于母链甲基化腺苷酸上游鸟苷酸的5位置切开子链,合成新的子链片段。切除修复切除修复是DNA损伤最为普遍的方式,主要分为碱基切除修复和核苷酸切除修复重组修复(复制后修复)先从同源DNA母链上将相应核苷酸序列片段移至子链缺口,然后再用新合成的序列补上母链空缺,主要作用是重新启动停滞的复制叉。DNA直接修复DNA直接修复不需要切除碱基或核苷酸,最常见的例子是DNA光解酶把在光下或经外线光照射形成的环丁烷胸腺嘧啶二体及6-4光化物还原成单体的过程。SOS反应细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施,当DNA两条链的损伤邻近时,损伤不能被切除修复
12、或重组修复,这时损伤处的DNA出现空缺,再随机加上核苷酸,容易造成突变。DNA的转座DNA的转座或称移位,是由可移位因子介导的遗传物质重排的现象,频率很低。转座子(Tn)是存在于染色体DNA上可自主复制和移位的基本单位,原核生物的转座子包含4类:1、插入序列(IS);2、类转座子因子;3、复合转座子,两端由IS或类IS构成,带有某些抗药性基因或其他宿主基因,一旦形成复合式转座子,IS序列就不能再单独移动;4、TnA转座子家族,两端为IR,可编码转座酶,解离酶和抗性物质。真核生物中的转座子主要包括转座子和反转座子。玉米细胞内存在自主型和非自主型两类转座子,非自主型转座子单独存在时是稳定的,不能转
13、座,当基因组同时含有属于同一家族的自主型转座子时,它才具备转座功能。转座子可分为复制型和非复制型,转座酶和解离酶分别作用于原始转座子和复制转座子。转座作用的遗传学效应1、引起插入突变;2、产生新的基因;3、产生染色体畸变(DNA重复、缺失或倒位);4、引起生物进化组蛋白的种类、修饰类型及其生物学意义根据电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4,这些组蛋白都含有大量赖氨酸和精氨酸。组蛋白的修饰作用包括甲基化,乙酰化,磷酸化以及ADP核糖基化等。一般来说,组蛋白乙酰化能选择地使某些染色质区域的结构从紧密变的松弛,开放某些基因的转录,增强其表达水平;而组蛋白甲基化即可抑制也可增强基因
14、表达,乙酰化修饰和甲基化修饰往往是相互排斥的。简述DNA聚合酶和Klenow的结构和功能占DNA聚合酶蛋白2/3的C端区域,相对分子质量68000,具有DNA聚合酶活性和35核酸外切酶活性,即可合成也可降解DNA,保证DNA复制的准确性;占DNA聚合酶蛋白1/3的N端区域,相对分子质量35000,具有53核酸外切酶活性,可做用于双链DNA,又可水解5端或距5端几个核苷酸处的磷酸二酯键。DNA聚合酶在DNA直接修复、除去冈崎片段5端RNA引物方面具有重要作用。Klenow大片段是用蛋白酶水解DNA聚合酶所得的大片段区域,具有53聚合酶活性和35核酸外切酶活性,在基因工程中有广泛应用,主要有:修复
15、反应、制备平末端;标记DNA3突出末端;双脱氧末端终止法进行DNA序列分析等。三、生物信息的传递(上)RNA转录的基本过程模板识别真核细胞中的模板识别与原核细胞不同,真核生物RNA聚合酶不能直接识别基因的启动子区,需要转录因子的辅助蛋白质按特定的顺序结合于启动子上,RNA聚合酶才能与之相合并形成复杂的前起始复合物(PIC),以保证有效的起始转录。转录起始转录起始就是RNA链上第一个核苷酸键的产生,该过程不需要引物,RNA聚合酶通过启动子的时间代表一个启动子的强弱,时间越短,该基因的转录起始频率越高。转录延伸RNA聚合酶释放因子离开启动子后,核心酶沿模板DNA链移动并使新生的RNA链不断延长的过
16、程。一旦聚合酶启动了基因转录,它就会一直移动合成RNA,直到遇到终止信号时才释放新生的RNA链。转录终止RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合体分开,转录泡瓦解。转录机器的主要成分RNA聚合酶RNA聚合酶以DNA双链为模板(若以单链为模板,活性大大降低),以4种核苷三磷酸为底物,并以Mg2+/Mn2+为辅因子,催化RNA链的起始、延伸和终止,不需要任何引物。原核生物RNA聚合酶大肠杆菌RNA聚合酶由两个亚基、一个亚基、一个亚基、和一个亚基组成核心酶,加上一个亚基后则成为聚合酶全酶,转录的起始过程需要全酶,由因子辨认起始点,延长过程仅需要核心酶催化。和亚基组成了聚合酶的催化中心,
17、亚基能与模板DNA、新生RNA链以及核苷酸底物相结合;亚基的作用是负责模板链的选择和转录的起始,它是酶的别构效应物,使酶专一性识别模板上的启动子。真核生物RNA聚合酶酶定位转录产物与功能对-鹅膏覃减RNA聚合酶核仁45SrRNA(5SrRNA)不敏感RNA聚合酶核质hnRNA(mRNA)敏感RNA聚合酶核质tRNA、5SrRNA、snRNA存在物种特异性转录复合物模板的识别阶段包括RNA聚合酶全酶对启动子的识别,聚合酶与启动子可逆性结合形成封闭复合物,此时DNA仍处于双链状态。然后封闭复合物转变成开放复合物,聚合酶全酶所结合的DNA序列中有一段双链被解开。真核生物转录起始至少还需要7中辅助因子
18、参与,这些蛋白辅助因子统称为转录因子(TF)启动子与转录起始启动子区的基本结构启动子是一段位于结构基因5端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确结合并具有转录起始的特异性。1、 转录单元是一段从启动子开始至终止子结束的DNA序列。转录起始位点是指与新生RNA链第一个核苷酸相对应DNA链上的碱基,通常为嘌呤。把起点5末端的序列称为上游,把3端称为下游,起点为+1,下游方向依次为+2、+3上游方向依次为1、22、 Pribnow区(TATA box)是一个由5个核苷酸(TATAA)组成的保守序列,其中央大约位于起点上游10bp处又称10区3、 35序列(Sexfama box
19、)在转录开始位点上游35区域也有一段保守序列,共同序列是TTGACA,称为35区大部分原核生物启动子都存在位于-10bp的TATA盒和位于-35bp的TTGACA盒,这两个区域是RNA聚合酶与启动子的结合位点,能与因子相互识别而具有很高的亲和力。4、 Hogness区,在真核基因中发现,位于转录起始-25-35bp处的TATAAA,也称TATA区5、 CAAT区,在-70-80bp处的共同序列CCAAT,称为CAAT区,是与原核生物中-35区相对应的序列启动子区的识别RNA聚合酶不能识别碱基本身,而是通过氢键互补的方式加以识别。RNA聚合酶与启动子区的结合聚合酶首先与启动子区闭合双链DNA结合
20、,形成二元闭合复合物,然后经过解链得到二元开链复合物,因此,RNA聚合酶既是双链DNA结合蛋白,又是单链DNA结合蛋白。-10区与-35区的最佳距离在原核生物中,-35区与-10区之间的距离大约是1619bp,小于15bp或大于20bp都会降低启动子的活性。在细菌中常见两种启动子突变,一种叫下降突变,一种叫上升突变(增加其共同序列的同一性)。增强子及其功能增强子是DNA上能提高转录起始效率的序列,可位于5或3末端,可能是通过影响染色质DNA-蛋白质结构或改变超螺旋的密度而改变模板的整体结构,从而使得RNA聚合酶更容易与模板DNA结合,起始基因转录,增强子具有下列特点:1、 远距离效应;2、无方
21、向性;3、顺式调节,只调节位于同一染色体上的靶基因,对其他染色体上的基因没有作用;4、无物种和基因特异性;5、具有组织特异性;6、有相位性,其作用和DNA的构象有关;7、有的增强子可对外部信号产生反应;(8、大多为重复序列,其内部常有一个核心序列(G)TGGA/TA/TA/T(G),该序列是产生增强效应所必需的)真核生物启动子对转录的影响真核基因启动子在-25-35区含有TATA序列,在-70-80区含有CCAAT序列,在-80-110区含有GCCACACCC或GGGCGGG序列,习惯上将TATA区上游的保守序列称为启动子元件(UPE)或上游激活序列(UAS)。TATA区的主要作用是使转录精确
22、起始,CAAT和GC区主要控制转录起始频率,基本不参与起始位点的确定。尽管3种UPE序列都有重要功能,但并不是每个基因的启动子区都包含这3种序列。转录的抑制抑制剂靶酶抑制作用类别放射线素-D真核生物RNA聚合酶与DNA结合,阻止延伸DNA模板功能抑制物利福霉素细菌全酶与亚基结合,抑制起始RNA聚合酶抑制物利迪链霉素细菌核心酶与亚基结合,抑制起始-鹅膏覃碱真核生物RNA聚合酶与RNA聚合酶结合原核与真核生物mRNA的特征比较原核生物mRNA的特征1、原核生物mRNA半衰期短,细菌基因的转录与翻译是紧密相连的;2、许多原核生物mRNA以多顺反子的形式存在,多顺反子mRNA是一组相邻或相互重叠基因的
23、转录产物,这样的一组基因可被称为一个操纵子;3、原核生物mRNA5端没有帽子结构,3端也没有多聚A尾巴或者很短,原核生物起始密码子AUG上游712个核苷酸处与一个被称为SD序列的保守区,该序列与16SrRNA3端反向互补,被认为在核糖体-mRNA的结合过程中起作用。真核生物mRNA特征1、真核生物mRNA5端有帽子结构(不包括叶绿体和线粒体mRNA),mRNA5端加“G”反应是由腺苷酸转移酶完成的,新加上的G与mRNA链上所有其他核苷酸方向相反,像一顶帽子扣在mRNA上,故而得名。mRNA的帽子结构常被甲基化,第一个甲基化出现在所有真核细胞的mRNA中,称为零类帽子,帽子结构可能使mRNA免遭
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 分子生物学 情况 总结 朱玉贤 整理 收拾 整顿 完全 完整 彻底
限制150内