《几何《相交线》教学设计.doc》由会员分享,可在线阅读,更多相关《几何《相交线》教学设计.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、几何相交线教学设计几何相交线教学设计黄婉秋本节课是七年级下学期的内容,是在七年级上册学习过线、角的有关知识的基础上,进一步研究两条直线位置关系的第一课时。对顶角是几何求解、证明中的一个基本图形,同位角、内错角、同旁内角的学习是平行线条件和平行线的特征的基础,所以本节内容相对简单,但又非常重要。相交线,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,我采用“双主互动”教学模式进行教学,经过这一周的攻坚战,充分调动学生的主动性,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点
2、点数学的简洁美。逻辑推理成功的愉悦感;经历了从认识到害怕、到再认识、到小的成功的过程,学生对几何学习的积极性明显增强,作业质量日渐提高。这一良性变化证明了教学中几点收获:1、 适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。2、 在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的缓冲地带,不可一步到位。3、 精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。4、 多对学生的错题进行辨析,多对学情分析反馈;5、 强化困难学生个别辅导,让他们一题一得,落到实处;分层作业,共同提升;
3、我想突破求新,希望引入设计能比较自然的引出概念并揭示内涵。一开始有个问题纠缠着我,那就是对顶角的大小关系是由位置关系决定的,但是我刚上课就让大家画大小相同的角,合不合乎逻辑。经过反复揣摩,我终于下定决心仍然如此设计。原因是我想首先学生是47中重点班的学生,加上该学校在搞自学模式,所以不会不预习,所以他们会自然想到作角两边的反向延长线得到所求角,另外作反向延长线的过程就是位置决定大小关系的过程,这在他们的潜意识里存在了。再者我想作为区级观摩课,大家都想听听新鲜的东西,哪怕它不一定好,但至少给各位老师一个讨论的话题和空间,这样就算是课上失败了,也是有所值。于是开头就定下来了。对于学生上黑板作出的等
4、角,我立即强调相等是观察想象的结果,还需要进一步说明。对顶角的概念出来后,立即找到生活原型,以加强认识,联系生活。在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成好习惯。在这个题目中我始终让学生对照定义辨别,加强认识。在第二个问题中,对于如何有条理地不重不漏地找对应角这个问题涉及分类策略问题,为防止跑题,所以简单提及,并未在课堂上解决。探究对顶角相等这个性质是本课的重难点,所以我的设计是先画图量角,让学生有个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下角的读数,提出可不可以根据
5、一个角的度数,计算出其对顶角的度数这样一个问题。其实这个问题设计是承上启下的,因为证明比较困难,所以通过具体的度数计算以作铺垫。结果证明这个设计是利于学生的思考的,因为在证明时我听到他们说出“和刚才计算一样”的话。练习题的设置一来是巩固,二来是让学生体会转化思想。圆锥顶角的测量设计是学生很感兴趣的,它具有相当的挑战性。在预设中,学生会有不同的设计,结果也是如此,他们想了很多和本节课知识联系不大的设计,比如测母线长和底面圆的直径并还原画出横截面等腰三角形,然后测顶角等等,反应了学生思维的灵活性,为鼓励求异思维和创新思想,我对此表示认可和鼓励。由于课前我精心准备,因此本节课堂预设是充分的,课堂生成是自然的。通过这节课让我体会到越是看起来简单的课,越是要精心钻研教材,挖掘其在教材中的地位和蕴含的数学思想。课堂教学永远是动态的辩证的,对于这样“反传统”的引入设计到底弊利几何,在圆锥顶角测量中要不要引导学生想到利用对顶角知识?给定直尺这样的工具到底是引导还是暗示都需要反复考虑,合理取舍。希望自己能通过公开课公开暴露问题,以求更多的同行给我更多的建议和帮助。正方形教学设计大数的认识教学设计口算除法教学设计及反思第 4 页 共 4 页
限制150内