椭圆经典编辑例题规范标准答案版.doc
《椭圆经典编辑例题规范标准答案版.doc》由会员分享,可在线阅读,更多相关《椭圆经典编辑例题规范标准答案版.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-!椭圆标准方程典型例题例1 已知椭圆的一个焦点为(0,2)求的值分析:把椭圆的方程化为标准方程,由,根据关系可求出的值解:方程变形为因为焦点在轴上,所以,解得又,所以,适合故例2 已知椭圆的中心在原点,且经过点,求椭圆的标准方程分析:因椭圆的中心在原点,故其标准方程有两种情况根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程解:当焦点在轴上时,设其方程为由椭圆过点,知又,代入得,故椭圆的方程为当焦点在轴上时,设其方程为由椭圆过点,知又,联立解得,故椭圆的方程为例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再利用椭圆定
2、义求解(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为原点建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程解:设两焦点为、,且,从椭圆定义知即从知垂直焦点所在的对称轴,所以在中,可求出,从而所求椭圆方程为或例5 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角
3、的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: 由椭圆定义知: ,则得 故 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法例7 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点
4、轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为: (椭圆内部分)(3)将代入得所求轨迹方程为: (椭圆内部分)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例8 已
5、知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:(1)把直线方程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程分析:椭圆的焦点容易求出,按照椭圆的定义,
6、本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决解:如图所示,椭圆的焦点为,点关于直线的对称点的坐标为(9,6),直线的方程为解方程组得交点的坐标为(5,4)此时最小所求椭圆的长轴:,又,因此,所求椭圆的方程为例10 已知方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例11 已知表示焦点在轴上的椭圆,求的取值范围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解:方程可化为因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 经典 编辑 编纂 例题 规范 标准答案
限制150内