正弦函数y=sinx的图象和性质.doc
《正弦函数y=sinx的图象和性质.doc》由会员分享,可在线阅读,更多相关《正弦函数y=sinx的图象和性质.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【本讲教育信息】一. 教学内容:1.3.1 正弦函数的图象和性质二. 教学目的1、掌握用几何法绘制正弦函数的图象的方法;掌握用五点法画正弦函数的简图的方法及意义;2、掌握正弦函数的性质及应用;3、掌握正弦型函数的图象(特别是用五点法画函数的图象)、性质及应用。三. 教学重点、难点重点:1、用五点法画函数的简图;2、函数的性质及应用;3、函数与的图象的关系。难点:1、正弦函数的周期性和单调性的理解;2、函数与的图象的关系。四. 知识分析1、正弦函数图象的几何作法采用弧度制, x、y 均为实数,步骤如下: (1)在 x 轴上任取一点 O1 ,以 Ol 为圆心作单位圆; (2)从这个圆与 x 轴交点
2、 A 起把圆分成 12 等份;(3)过圆上各点作x轴的垂线,可得对应于0、的正弦线; (4)相应的再把 x 轴上从原点 O 开始,把这0这段分成 12 等份;(5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合;(6)用光滑曲线把这些正弦线的终点连结起来。2、五点法作图描点法在要求不太高的情况下,可用五点法作出,的图象上有五点起决定作用,它们是。描出这五点后,其图象的形状基本上就确定了。因此,在精确度要求不太高时,我们常常先描出这五个点,然后用平滑的曲线将它们连接起来,就得到在相应区间内正弦函数的简图,这种方法叫做五点法。注意:(1)描点法所取的各点的纵坐标都是查三角函数表得到的数值
3、,不易描出对应点的精确位置,因此作出的图象不够精确。(2)几何法作图较为精确,但画图时较繁。(3)五点法是我们画三角函数图象的基本方法,要切实掌握好,与五点法作图有关的问题曾出现在历届高考试题中。(4)作图象时,函数自变量要用弧度制,这样自变量与函数值均为实数,因此在 x 轴、 y 轴上可以统一单位,作出的图象正规,便于应用。(5)如果函数表达式不是,则那五点就可能不是如:用“五点法”作函数的简图,所用的五个关键点列表就是:而用“五点法”作函数的简图,开始的一段图象所用的五个关键点列表就是:x02y010103、正弦曲线 下面是正弦函数的图象的一部分:4、正弦函数的值域从正弦线可以看出:正弦线
4、的长度小于或等于单位圆半径的长度;从正弦曲线也可以看出:正弦曲线分布在 y = 1 和 y1 之间,说明|sinx|1,即正弦函数的值域是1 , 1 。注意:这里所说的正弦函数的值域是l,1,是指整个正弦曲线或一个周期内的正弦曲线。如果定义域不为全体实数,那么正弦函数的值域就可能不是1,1。如,则值域就是0,1, 因而在确定正弦函数的值域时,要特别注意其定义域。5、周期函数的定义 一般地,对于函数 yf ( x ) ,如果存在一个不为零的常数 T ,使得当 x 取定义域内的每一个值时, f(xT)f(x)都成立,那么就把函数 y = f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。
5、注意:( 1)定义应对定义域中的每一个 x 值来说,只有个别的 x 值或只差个别的 x 值满足f(xT)f(x)或不满足都不能说 T 是 f(x)的周期。 例如:但是就是说,不能对x的定义域内的每一个值都有, 因此不是 sinx的周期 。(2)从等式f(xT)f(x)来看,应强调的是与自变量 x 本身相加的常数才是周期,如 f (2x + T) = f (2x) , T 不是f(2x)的周期,而应写成 f(2 x + T) f( 2x ) ,则是 f ( 2x)的周期。(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期,今后提到的三角函数的周期,如未特别指明,一般
6、都是指它的最小正周期。(4)并不是所有周期函数都存在最小正周期例知,常数函数 f ( x ) = C ( C 为常数) , x R ,当 x 为定义域内的任何值时,函数值都是 C ,即对于函数 f( x)的定义域内的每一个值 x ,都有 f ( x + T ) C ,因此 f (x)是周期函数,由于 T 可以是任意不为零的常数,而正数集合中没有最小者,所以 f (x)没有最小正周期。再如函数 设 r 是任意一个有理数,那么当 x 是有理数时, x + r 也是有理数,当 x 为无理数时, x + r 也是无理数,就是说 D ( x )与 D ( x + r )或者等于 1 或者等于 O ,因此
7、在两种情况下,都有 D ( x + r ) D ( x ) ,所以 D ( x )是周期函数, r 是 D ( x )的周期,由于 r 可以是任一有理数,而正有理数集合中没有最小者,所以 D (x)没有最小正周期。(5)“f ( x + T )f ( x ) ”是定义域内的恒等式,即对定义域内的每一个值都成立, T 是非零常数,周期 T 是使函数值重复出现的自变量 x 的增加值。(6)周期函数的周期不只一个,若T是周期,则 kT ( kN* )一定也是周期。(7)在周期函数 y f(x)中,T是周期,若 x 是定义域内的一个值,则 x + kT 也一定属于定义域,因此周期函数的定义域一定是无限
8、集。6、正弦函数的周期性(1)从正弦线的变化规律可以看出,正弦函数是周期函数,是它的周期,最小正周期是 2。(2)正弦函数的周期也可由诱导公式 sin ( x + 2k)sinx ( kZ)得到。7、正弦函数的奇偶性正弦函数 y = sinx ( xR )是奇函数。(1)由诱导公式 sin(x ) sinx 可知上述结论成立, (2)反映在图象上,正弦曲线关于原点 O 对称; (3)正弦曲线是中心对称图形,其所有的对称中心为( k, 0 )。正弦曲线也是轴对称图形,其所有的对称轴方程为。注意:正弦曲线的对称轴一定是经过正弦曲线的最高点或最低点,此时正弦值为最大值或最小值。 8、正弦函数的单调性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 函数 sinx 图象 图像 以及 性质
限制150内